Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 7 |
Descriptor
| Lasers | 8 |
| Science Laboratories | 8 |
| Spectroscopy | 8 |
| College Science | 7 |
| Chemistry | 6 |
| Science Instruction | 6 |
| Undergraduate Study | 5 |
| Laboratory Experiments | 4 |
| Science Experiments | 3 |
| Scientific Concepts | 3 |
| Hands on Science | 2 |
| More ▼ | |
Author
Publication Type
| Journal Articles | 8 |
| Reports - Descriptive | 5 |
| Reports - Research | 2 |
| Guides - Classroom - Teacher | 1 |
Education Level
| Higher Education | 6 |
| Postsecondary Education | 2 |
Audience
| Practitioners | 1 |
| Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip A. Kocheril; Makaela M. Jones; Jessica Z. Kubicek-Sutherland – Journal of Chemical Education, 2022
Raman scattering spectroscopies are important analytical tools in modern chemistry. Here, we describe the construction of the unamplified Raman scattering analysis (URSA) instrument: an inexpensive, open-table Raman spectrometer that uses a 532 nm diode-pumped laser as a light source. Upon application of this spectrometer to DNA extracted from…
Descriptors: Spectroscopy, Science Instruction, Chemistry, Lasers
David L. Myers; Marc Hill; Brooke Baughman; Eugene T. Smith – Journal of Chemical Education, 2023
This exercise encompassed the construction and use of a microcontroller-based laser refractometer. The instrument, which does not require a high skill level to build, primarily consisted of a line laser, optical sensor, several 3-D printed parts and printed circuit boards, and a microcontroller development board. Construction and testing of the…
Descriptors: Open Education, Lasers, Shared Resources and Services, Printing
McBane, George C.; Cannella, Christian; Schaertel, Stephanie – Journal of Chemical Education, 2018
A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…
Descriptors: Spectroscopy, Chemistry, Undergraduate Students, Science Instruction
Silverstein, Todd P.; Williamson, J. Charles – Biochemistry and Molecular Biology Education, 2019
We have developed a laboratory project in which students prepare liposomes, expose them to hyperosmotic and hypoosmotic solutions, and follow the resulting shrinking and swelling (respectively) with laser light scattering. Each light intensity transient can be fit to an exponential decline or rise, with the decay constant (k) and the amplitude…
Descriptors: Science Laboratories, Science Instruction, Scientific Concepts, Biochemistry
Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano – Physics Education, 2017
The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras,…
Descriptors: Science Instruction, Light, Physics, Science Experiments
Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S. – Journal of Chemical Education, 2017
This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…
Descriptors: Spectroscopy, Metallurgy, Qualitative Research, Simulation
Chinni, Rosemarie C. – Journal of Chemical Education, 2012
This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…
Descriptors: Chemistry, Spectroscopy, Lasers, Laboratory Experiments
Peer reviewedErskine, Steven R.; Bobbitt, Donald R. – Journal of Chemical Education, 1989
Gives upper level chemistry students a better understanding of the application of lasers in the field of spectroscopy. Provides three experiments to demonstrate the thermal lens effect: determination of beam profile, cell position optimization, and pKa determination. (MVL)
Descriptors: Chemical Analysis, Chemistry, College Science, Inorganic Chemistry

Direct link
