NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Yun; Brusilovsky, Peter; Guerra, Julio; Koedinger, Kenneth; Schunn, Christian – Journal of Computer Assisted Learning, 2023
Background: Skill integration is vital in students' mastery development and is especially prominent in developing code tracing skills which are foundational to programming, an increasingly important area in the current STEM education. However, instructional design to support skill integration in learning technologies has been limited. Objectives:…
Descriptors: Intelligent Tutoring Systems, Coding, Programming, Skill Development
Peer reviewed Peer reviewed
Conrad Borchers; Jeroen Ooge; Cindy Peng; Vincent Aleven – Grantee Submission, 2025
Personalized problem selection enhances student practice in tutoring systems. Prior research has focused on transparent problem selection that supports learner control but rarely engages learners in selecting practice materials. We explored how different levels of control (i.e., full AI control, shared control, and full learner control), combined…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Learner Controlled Instruction, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Agarwal, Deepak; Baker, Ryan S.; Muraleedharan, Anupama – International Educational Data Mining Society, 2020
There has been considerable interest in techniques for modelling student learning across practice problems to drive real-time adaptive learning, with particular focus on variants of the classic Bayesian Knowledge Tracing (BKT) model proposed by Corbett & Anderson, 1995. Over time researches have proposed many variants of BKT with…
Descriptors: Intelligent Tutoring Systems, Models, Skill Development, Mastery Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Conrad Borchers; Alex Houk; Vincent Aleven; Kenneth R. Koedinger – Grantee Submission, 2025
Active learning promises improved educational outcomes yet depends on students' sustained motivation to engage in practice. Goal setting can enhance learner engagement. However, past evidence of the effectiveness of setting goals tends to be limited to non-digital learning settings and does not scale well as it requires active teacher or parent…
Descriptors: Learner Engagement, Educational Benefits, Goal Orientation, Rewards
Ethan Prihar; Manaal Syed; Korinn Ostrow; Stacy Shaw; Adam Sales; Neil Heffernan – Grantee Submission, 2022
As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user…
Descriptors: Educational Trends, Electronic Learning, Educational Experience, Educational Experiments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ethan Prihar; Manaal Syed; Korinn Ostrow; Stacy Shaw; Adam Sales; Neil Heffernan – International Educational Data Mining Society, 2022
As online learning platforms become more ubiquitous throughout various curricula, there is a growing need to evaluate the effectiveness of these platforms and the different methods used to structure online education and tutoring. Towards this endeavor, some platforms have performed randomized controlled experiments to compare different user…
Descriptors: Educational Trends, Electronic Learning, Educational Experience, Educational Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Xia; Robin Schmucker; Conrad Borchers; Vincent Aleven – Grantee Submission, 2025
Mastery learning improves learning proficiency and efficiency. However, the overpractice of skills--students spending time on skills they have already mastered--remains a fundamental challenge for tutoring systems. Previous research has reduced overpractice through the development of better problem selection algorithms and the authoring of focused…
Descriptors: Mastery Learning, Skill Development, Intelligent Tutoring Systems, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Qiao; Maclellan, Christopher J. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms are embedded in Intelligent Tutoring Systems (ITS) to keep track of students' learning process. While knowledge tracing models have been extensively studied in offline settings, very little work has explored their use in online settings. This is primarily because conducting experiments to evaluate and select knowledge…
Descriptors: Electronic Learning, Mastery Learning, Computer Simulation, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Botelho, Anthony; Patikorn, Thanaporn; Heffernan, Neil T. – International Educational Data Mining Society, 2018
Randomized A/B tests in educational software are not run in a vacuum: often, reams of historical data are available alongside the data from a randomized trial. This paper proposes a method to use this historical data--often highdimensional and longitudinal--to improve causal estimates from A/B tests. The method proceeds in two steps: first, fit a…
Descriptors: Courseware, Data Analysis, Causal Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ifenthaler, Dirk, Ed.; Sampson, Demetrios G., Ed.; Isaías, Pedro, Ed. – Cognition and Exploratory Learning in the Digital Age, 2022
This book is about inclusivity and open education in the digital age. It reports the latest data on this topic from the 2021 Cognition and Exploratory Learning in the Digital Age (CELDA) conference. This annual conference focuses on challenges pertaining to the evolution of the learning process, the role of pedagogical approaches and the progress…
Descriptors: Teaching Methods, Educational Innovation, Educational Technology, Technology Uses in Education
Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken – International Educational Data Mining Society, 2015
Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…
Descriptors: Bayesian Statistics, Models, Skill Development, Intelligent Tutoring Systems
Wan, Hao; Beck, Joseph Barbosa – International Educational Data Mining Society, 2015
The phenomenon of wheel spinning refers to students attempting to solve problems on a particular skill, but becoming stuck due to an inability to learn the skill. Past research has found that students who do not master a skill quickly tend not to master it at all. One question is why do students wheel spin? A plausible hypothesis is that students…
Descriptors: Skill Development, Problem Solving, Knowledge Level, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Peer reviewed Peer reviewed
Direct linkDirect link
Nowak, Elena – Technology, Instruction, Cognition and Learning, 2014
This study examined the effectiveness of a dynamically adaptive TutorIT tutorial for graduate students' learning of basic statistical skills and their attitudes toward this tutorial. Fifteen in-service teachers interacted with the tutorial. As hypothesized, all who completed the tutorial demonstrated mastery. However, the class differed…
Descriptors: Intelligent Tutoring Systems, Statistics, Instructional Effectiveness, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Baker, Ryan S. J. D.; Goldstein, Adam B.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
Intelligent tutors have become increasingly accurate at detecting whether a student knows a skill, or knowledge component (KC), at a given time. However, current student models do not tell us exactly at which point a KC is learned. In this paper, we present a machine-learned model that assesses the probability that a student learned a KC at a…
Descriptors: Intelligent Tutoring Systems, Mastery Learning, Probability, Knowledge Level