NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Botelho, Anthony; Patikorn, Thanaporn; Heffernan, Neil T. – International Educational Data Mining Society, 2018
Randomized A/B tests in educational software are not run in a vacuum: often, reams of historical data are available alongside the data from a randomized trial. This paper proposes a method to use this historical data--often highdimensional and longitudinal--to improve causal estimates from A/B tests. The method proceeds in two steps: first, fit a…
Descriptors: Courseware, Data Analysis, Causal Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ryan, Sarah; Cox, Joshua D. – Regional Educational Laboratory Northeast & Islands, 2016
Many states are moving away from approaches that base student advancement on credits and "seat time" toward competency-based learning approaches that provide schools with the flexibility to link a student's advancement to mastery of content. Regional Educational Laboratory Northeast & Islands, in partnership with the Northeast…
Descriptors: Competency Based Education, Student Surveys, Student Experience, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests