Publication Date
| In 2026 | 0 |
| Since 2025 | 12 |
| Since 2022 (last 5 years) | 56 |
| Since 2017 (last 10 years) | 108 |
| Since 2007 (last 20 years) | 255 |
Descriptor
| Sample Size | 404 |
| Simulation | 404 |
| Item Response Theory | 113 |
| Statistical Analysis | 92 |
| Error of Measurement | 86 |
| Models | 84 |
| Test Items | 80 |
| Comparative Analysis | 77 |
| Monte Carlo Methods | 75 |
| Correlation | 67 |
| Evaluation Methods | 64 |
| More ▼ | |
Source
Author
| Fan, Xitao | 7 |
| Beretvas, S. Natasha | 5 |
| Algina, James | 4 |
| Chan, Wai | 4 |
| Cohen, Allan S. | 4 |
| De Champlain, Andre | 4 |
| Finch, W. Holmes | 4 |
| French, Brian F. | 4 |
| Kim, Seock-Ho | 4 |
| Kromrey, Jeffrey D. | 4 |
| Paek, Insu | 4 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 4 |
| Researchers | 3 |
Location
| North Carolina | 2 |
| Armenia | 1 |
| Austria | 1 |
| Canada | 1 |
| Florida (Miami) | 1 |
| Hong Kong | 1 |
| Indiana | 1 |
| Iran | 1 |
| Montana | 1 |
| New York (New York) | 1 |
| Norway | 1 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 2 |
Assessments and Surveys
What Works Clearinghouse Rating
Xu, Jie – ProQuest LLC, 2019
Research has shown that cross-sectional mediation analysis cannot accurately reflect a true longitudinal mediated effect. To investigate longitudinal mediated effects, different longitudinal mediation models have been proposed and these models focus on different research questions related to longitudinal mediation. When fitting mediation models to…
Descriptors: Case Studies, Error of Measurement, Longitudinal Studies, Models
Bramley, Tom – Research Matters, 2020
The aim of this study was to compare, by simulation, the accuracy of mapping a cut-score from one test to another by expert judgement (using the Angoff method) versus the accuracy with a small-sample equating method (chained linear equating). As expected, the standard-setting method resulted in more accurate equating when we assumed a higher level…
Descriptors: Cutting Scores, Standard Setting (Scoring), Equated Scores, Accuracy
Yesiltas, Gonca; Paek, Insu – Educational and Psychological Measurement, 2020
A log-linear model (LLM) is a well-known statistical method to examine the relationship among categorical variables. This study investigated the performance of LLM in detecting differential item functioning (DIF) for polytomously scored items via simulations where various sample sizes, ability mean differences (impact), and DIF types were…
Descriptors: Simulation, Sample Size, Item Analysis, Scores
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Papadimitropoulou, Katerina; Stijnen, Theo; Dekkers, Olaf M.; le Cessie, Saskia – Research Synthesis Methods, 2019
The vast majority of meta-analyses uses summary/aggregate data retrieved from published studies in contrast to meta-analysis of individual participant data (IPD). When the outcome is continuous and IPD are available, linear mixed modelling methods can be employed in a one-stage approach. This allows for flexible modelling of within-study…
Descriptors: Meta Analysis, Outcome Measures, Hierarchical Linear Modeling, Sample Size
Fager, Meghan L. – ProQuest LLC, 2019
Recent research in multidimensional item response theory has introduced within-item interaction effects between latent dimensions in the prediction of item responses. The objective of this study was to extend this research to bifactor models to include an interaction effect between the general and specific latent variables measured by an item.…
Descriptors: Test Items, Item Response Theory, Factor Analysis, Simulation
Isaac M. Opper – Annenberg Institute for School Reform at Brown University, 2021
Researchers often include covariates when they analyze the results of randomized controlled trials (RCTs), valuing the increased precision of the estimates over the potential of inducing small-sample bias when doing so. In this paper, we develop a sufficient condition which ensures that the inclusion of covariates does not cause small-sample bias…
Descriptors: Randomized Controlled Trials, Sample Size, Statistical Bias, Artificial Intelligence
Minchen, Nathan; de la Torre, Jimmy – Measurement: Interdisciplinary Research and Perspectives, 2018
Cognitive diagnosis models (CDMs) allow for the extraction of fine-grained, multidimensional diagnostic information from appropriately designed tests. In recent years, interest in such models has grown as formative assessment grows in popularity. Many dichotomous as well as several polytomous CDMs have been proposed in the last two decades, but…
Descriptors: Cognitive Measurement, Item Response Theory, Formative Evaluation, Models
Finch, W. Holmes; Finch, Maria Hernández – Journal of Experimental Education, 2018
Single subject (SS) designs are popular in educational and psychological research. There exist several statistical techniques designed to analyze such data and to address the question of whether an intervention has the desired impact. Recently, researchers have suggested that generalized additive models (GAMs) might be useful for modeling…
Descriptors: Educational Research, Longitudinal Studies, Simulation, Models
Makela, Susanna; Si, Yajuan; Gelman, Andrew – Grantee Submission, 2018
Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to…
Descriptors: Bayesian Statistics, Statistical Inference, Sampling, Probability
Kosch, Robin; Jung, Klaus – Research Synthesis Methods, 2019
Research synthesis, eg, by meta-analysis, is more and more considered in the area of high-dimensional data from molecular research such as gene and protein expression data, especially because most studies and experiments are performed with very small sample sizes. In contrast to most clinical and epidemiological trials, raw data are often…
Descriptors: Genetics, Meta Analysis, Molecular Structure, Scientific Research
Abulela, Mohammed A. A.; Rios, Joseph A. – Applied Measurement in Education, 2022
When there are no personal consequences associated with test performance for examinees, rapid guessing (RG) is a concern and can differ between subgroups. To date, the impact of differential RG on item-level measurement invariance has received minimal attention. To that end, a simulation study was conducted to examine the robustness of the…
Descriptors: Comparative Analysis, Robustness (Statistics), Nonparametric Statistics, Item Analysis
Hemmert, Giselmar A. J.; Schons, Laura M.; Wieseke, Jan; Schimmelpfennig, Heiko – Sociological Methods & Research, 2018
The literature proposes numerous so-called pseudo-R[superscript 2] measures for evaluating "goodness of fit" in regression models with categorical dependent variables. Unlike ordinary least square-R[superscript 2], log-likelihood-based pseudo-R[superscript 2]s do not represent the proportion of explained variance but rather the…
Descriptors: Regression (Statistics), Sample Size, Predictor Variables, Benchmarking
Hoofs, Huub; van de Schoot, Rens; Jansen, Nicole W. H.; Kant, IJmert – Educational and Psychological Measurement, 2018
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian…
Descriptors: Goodness of Fit, Bayesian Statistics, Factor Analysis, Sample Size
Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael – Applied Developmental Science, 2017
Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…
Descriptors: Factor Analysis, Structural Equation Models, Correlation, Sample Size

Direct link
Peer reviewed
