Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 13 |
| Since 2017 (last 10 years) | 43 |
| Since 2007 (last 20 years) | 107 |
Descriptor
Source
Author
| Cai, Li | 6 |
| Enders, Craig K. | 5 |
| Lee, Sik-Yum | 5 |
| Yuan, Ke-Hai | 5 |
| Amanda Goodwin | 4 |
| Matthew Naveiras | 4 |
| Song, Xin-Yuan | 4 |
| Sun-Joo Cho | 4 |
| Woods, Carol M. | 4 |
| Zhang, Jinming | 4 |
| Bentler, Peter M. | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 3 |
| Practitioners | 1 |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 2 |
Assessments and Surveys
What Works Clearinghouse Rating
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods
Paek, Insu; Wilson, Mark – Educational and Psychological Measurement, 2011
This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…
Descriptors: Test Bias, Test Length, Statistical Inference, Geometric Concepts
Schlomer, Gabriel L.; Bauman, Sheri; Card, Noel A. – Journal of Counseling Psychology, 2010
This article urges counseling psychology researchers to recognize and report how missing data are handled, because consumers of research cannot accurately interpret findings without knowing the amount and pattern of missing data or the strategies that were used to handle those data. Patterns of missing data are reviewed, and some of the common…
Descriptors: Maximum Likelihood Statistics, Counseling Psychology, Researchers, Data Collection
Cai, Li – Psychometrika, 2010
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
Descriptors: Quality of Life, Factor Structure, Factor Analysis, Computation
Verkuilen, Jay; Smithson, Michael – Journal of Educational and Behavioral Statistics, 2012
Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…
Descriptors: Responses, Regression (Statistics), Statistical Analysis, Models
Young, Rebekah; Johnson, David – Journal of Marriage and Family, 2013
Secondary respondent data are underutilized because researchers avoid using these data in the presence of substantial missing data. The authors reviewed, evaluated, and tested solutions to this problem. Five strategies of dealing with missing partner data were reviewed: (a) complete case analysis, (b) inverse probability weighting, (c) correction…
Descriptors: Research Methodology, Marital Satisfaction, Marriage, Spouses
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Woods, Carol M.; Lin, Nan – Applied Psychological Measurement, 2009
Davidian-curve item response theory (DC-IRT) is introduced, evaluated with simulations, and illustrated using data from the Schedule for Nonadaptive and Adaptive Personality Entitlement scale. DC-IRT is a method for fitting unidimensional IRT models with maximum marginal likelihood estimation, in which the latent density is estimated,…
Descriptors: Item Response Theory, Personality Measures, Computation, Simulation
Woods, Carol M. – Applied Psychological Measurement, 2011
Differential item functioning (DIF) occurs when an item on a test, questionnaire, or interview has different measurement properties for one group of people versus another, irrespective of true group-mean differences on the constructs being measured. This article is focused on item response theory based likelihood ratio testing for DIF (IRT-LR or…
Descriptors: Simulation, Item Response Theory, Testing, Questionnaires
Suh, Youngsuk; Bolt, Daniel M. – Psychometrika, 2010
Nested logit item response models for multiple-choice data are presented. Relative to previous models, the new models are suggested to provide a better approximation to multiple-choice items where the application of a solution strategy precedes consideration of response options. In practice, the models also accommodate collapsibility across all…
Descriptors: Computation, Simulation, Psychometrics, Models
Ryu, Ehri; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In multilevel structural equation modeling, the "standard" approach to evaluating the goodness of model fit has a potential limitation in detecting the lack of fit at the higher level. Level-specific model fit evaluation can address this limitation and is more informative in locating the source of lack of model fit. We proposed level-specific test…
Descriptors: Structural Equation Models, Evaluation Methods, Goodness of Fit, Simulation

Peer reviewed
Direct link
