NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 31 to 45 of 273 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yao, Minghong; Wang, Yuning; Ren, Yan; Jia, Yulong; Zou, Kang; Li, Ling; Sun, Xin – Research Synthesis Methods, 2023
Rare events meta-analyses of randomized controlled trials (RCTs) are often underpowered because the outcomes are infrequent. Real-world evidence (RWE) from non-randomized studies may provide valuable complementary evidence about the effects of rare events, and there is growing interest in including such evidence in the decision-making process.…
Descriptors: Evidence, Meta Analysis, Randomized Controlled Trials, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Zhu, Hongyue; Jiao, Hong; Gao, Wei; Meng, Xiangbin – Journal of Educational and Behavioral Statistics, 2023
Change-point analysis (CPA) is a method for detecting abrupt changes in parameter(s) underlying a sequence of random variables. It has been applied to detect examinees' aberrant test-taking behavior by identifying abrupt test performance change. Previous studies utilized maximum likelihood estimations of ability parameters, focusing on detecting…
Descriptors: Bayesian Statistics, Test Wiseness, Behavior Problems, Reaction Time
Peer reviewed Peer reviewed
Direct linkDirect link
Martinková, Patrícia; Bartoš, František; Brabec, Marek – Journal of Educational and Behavioral Statistics, 2023
Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be affected by contextual variables, such as the rater's or ratee's gender, major, or experience. Identification of such heterogeneity sources in IRR is important for the implementation of policies with the potential to decrease measurement error…
Descriptors: Interrater Reliability, Bayesian Statistics, Statistical Inference, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Hecht, Martin; Voelkle, Manuel C. – International Journal of Behavioral Development, 2021
The analysis of cross-lagged relationships is a popular approach in prevention research to explore the dynamics between constructs over time. However, a limitation of commonly used cross-lagged models is the requirement of equally spaced measurement occasions that prevents the usage of flexible longitudinal designs and complicates cross-study…
Descriptors: Models, Longitudinal Studies, Prevention, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Stella Yun; Lee, Won-Chan – Applied Measurement in Education, 2023
This study evaluates various scoring methods including number-correct scoring, IRT theta scoring, and hybrid scoring in terms of scale-score stability over time. A simulation study was conducted to examine the relative performance of five scoring methods in terms of preserving the first two moments of scale scores for a population in a chain of…
Descriptors: Scoring, Comparative Analysis, Item Response Theory, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Chen, Jianshen; Lyu, Weicong; Yavuz, Sinan – Large-scale Assessments in Education, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
David Kaplan; Jianshen Chen; Weicong Lyu; Sinan Yavuz – Grantee Submission, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2022
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is based on propensity score weighting, which is sensitive to poor covariate overlap and cannot extrapolate…
Descriptors: Patients, Medical Research, Comparative Analysis, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Fujimoto, Ken A.; Neugebauer, Sabina R. – Educational and Psychological Measurement, 2020
Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are…
Descriptors: Bayesian Statistics, Item Response Theory, Sample Size, Factor Structure
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  19