Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 48 |
| Since 2017 (last 10 years) | 96 |
| Since 2007 (last 20 years) | 204 |
Descriptor
| Bayesian Statistics | 273 |
| Simulation | 273 |
| Models | 110 |
| Item Response Theory | 81 |
| Computation | 68 |
| Comparative Analysis | 57 |
| Probability | 46 |
| Monte Carlo Methods | 45 |
| Evaluation Methods | 40 |
| Test Items | 37 |
| Data Analysis | 32 |
| More ▼ | |
Source
Author
| Glas, Cees A. W. | 7 |
| Lee, Sik-Yum | 7 |
| Mislevy, Robert J. | 5 |
| Zhiyong Zhang | 5 |
| Cohen, Allan S. | 4 |
| Song, Xin-Yuan | 4 |
| Weiss, David J. | 4 |
| Zhang, Zhiyong | 4 |
| Zwick, Rebecca | 4 |
| Almond, Russell G. | 3 |
| Chen, Jianshen | 3 |
| More ▼ | |
Publication Type
Education Level
| Secondary Education | 12 |
| Higher Education | 9 |
| Junior High Schools | 6 |
| Middle Schools | 6 |
| Elementary Education | 4 |
| Grade 8 | 4 |
| High Schools | 4 |
| Postsecondary Education | 4 |
| Grade 10 | 3 |
| Grade 12 | 3 |
| Grade 7 | 3 |
| More ▼ | |
Audience
| Researchers | 3 |
| Teachers | 1 |
Location
| Australia | 3 |
| Spain | 3 |
| Massachusetts | 2 |
| Netherlands | 2 |
| North Carolina | 2 |
| Taiwan | 2 |
| Armenia | 1 |
| Austria | 1 |
| Belgium | 1 |
| Czech Republic | 1 |
| Florida | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yuan Fang; Lijuan Wang – Grantee Submission, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Research Problems, Longitudinal Studies, Simulation
James Ohisei Uanhoro – Educational and Psychological Measurement, 2024
Accounting for model misspecification in Bayesian structural equation models is an active area of research. We present a uniquely Bayesian approach to misspecification that models the degree of misspecification as a parameter--a parameter akin to the correlation root mean squared residual. The misspecification parameter can be interpreted on its…
Descriptors: Bayesian Statistics, Structural Equation Models, Simulation, Statistical Inference
Jihong Zhang – ProQuest LLC, 2022
Recently, Bayesian diagnostic classification modeling has been becoming popular in health psychology, education, and sociology. Typically information criteria are used for model selection when researchers want to choose the best model among alternative models. In Bayesian estimation, posterior predictive checking is a flexible Bayesian model…
Descriptors: Bayesian Statistics, Cognitive Measurement, Models, Classification
Jennifer L. Proper; Haitao Chu; Purvi Prajapati; Michael D. Sonksen; Thomas A. Murray – Research Synthesis Methods, 2024
Drug repurposing refers to the process of discovering new therapeutic uses for existing medicines. Compared to traditional drug discovery, drug repurposing is attractive for its speed, cost, and reduced risk of failure. However, existing approaches for drug repurposing involve complex, computationally-intensive analytical methods that are not…
Descriptors: Network Analysis, Meta Analysis, Prediction, Drug Therapy
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Grantee Submission, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Liang, Xinya; Cao, Chunhua – Journal of Experimental Education, 2023
To evaluate multidimensional factor structure, a popular method that combines features of confirmatory and exploratory factor analysis is Bayesian structural equation modeling with small-variance normal priors (BSEM-N). This simulation study evaluated BSEM-N as a variable selection and parameter estimation tool in factor analysis with sparse…
Descriptors: Factor Analysis, Bayesian Statistics, Structural Equation Models, Simulation
Eray Selçuk; Ergül Demir – International Journal of Assessment Tools in Education, 2024
This research aims to compare the ability and item parameter estimations of Item Response Theory according to Maximum likelihood and Bayesian approaches in different Monte Carlo simulation conditions. For this purpose, depending on the changes in the priori distribution type, sample size, test length, and logistics model, the ability and item…
Descriptors: Item Response Theory, Item Analysis, Test Items, Simulation
Samer A. Nour Eddine – ProQuest LLC, 2024
In this thesis, I use a combination of simulations and empirical data to demonstrate that a small set of structural and functional principles - the basic tenets of predictive coding theory - succinctly accounts for a very wide range of properties in the language processing system. Predictive coding approximates hierarchical Bayesian inference via…
Descriptors: Semantics, Simulation, Psycholinguistics, Bayesian Statistics
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Zhenqiu Lu; Zhiyong Zhang – Grantee Submission, 2022
Bayesian approach is becoming increasingly important as it provides many advantages in dealing with complex data. However, there is no well-defined model selection criterion or index in a Bayesian context. To address the challenges, new indices are needed. The goal of this study is to propose new model selection indices and to investigate their…
Descriptors: Models, Goodness of Fit, Bayesian Statistics, Simulation

Peer reviewed
Direct link
