Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 5 |
Descriptor
| Matrices | 7 |
| Simulation | 7 |
| Structural Equation Models | 7 |
| Computation | 3 |
| Computer Software | 3 |
| Evaluation Methods | 3 |
| Correlation | 2 |
| Error Patterns | 2 |
| Statistical Analysis | 2 |
| Accuracy | 1 |
| Aggression | 1 |
| More ▼ | |
Author
| Asparouhov, Tihomir | 1 |
| Beretvas, S. Natasha | 1 |
| Boyd, Jeremy | 1 |
| Drotar, Scott | 1 |
| Enders, Craig K. | 1 |
| Furlow, Carolyn F. | 1 |
| Hamaker, Ellen L. | 1 |
| Julia-Kim Walther | 1 |
| Lubke, Gitta H. | 1 |
| Marcoulides, George A. | 1 |
| Martin Hecht | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 7 |
| Reports - Descriptive | 3 |
| Reports - Evaluative | 2 |
| Reports - Research | 2 |
Education Level
| Elementary Education | 1 |
| Grade 3 | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…
Descriptors: Simulation, Structural Equation Models, Statistical Analysis, Mathematics
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Enders, Craig K.; Tofighi, Davood – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The purpose of this study was to examine the impact of misspecifying a growth mixture model (GMM) by assuming that Level-1 residual variances are constant across classes, when they do, in fact, vary in each subpopulation. Misspecification produced bias in the within-class growth trajectories and variance components, and estimates were…
Descriptors: Structural Equation Models, Computation, Monte Carlo Methods, Evaluation Methods
Peer reviewedRaykov, Tenko; Marcoulides, George A.; Boyd, Jeremy – Structural Equation Modeling, 2003
Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)
Descriptors: Data Analysis, Matrices, Simulation, Structural Equation Models
Beretvas, S. Natasha; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…
Descriptors: Structural Equation Models, Matrices, Statistical Analysis, Synthesis
Asparouhov, Tihomir; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions, although these have still not made…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Research Methodology

Direct link
