Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 10 |
| Since 2007 (last 20 years) | 44 |
Descriptor
| Computation | 49 |
| Scores | 49 |
| Simulation | 49 |
| Item Response Theory | 18 |
| Comparative Analysis | 11 |
| Correlation | 11 |
| Models | 10 |
| Statistical Analysis | 10 |
| Error of Measurement | 8 |
| Evaluation Methods | 8 |
| Regression (Statistics) | 8 |
| More ▼ | |
Source
Author
| Cai, Li | 2 |
| Monroe, Scott | 2 |
| Sijtsma, Klaas | 2 |
| Andersson, Björn | 1 |
| Andrich, David | 1 |
| Betebenner, Damian W. | 1 |
| Bradley, Sean | 1 |
| Brennan, Ross | 1 |
| Burket, George | 1 |
| Camilli, Gregory | 1 |
| Castellano, Katherine E. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 39 |
| Reports - Research | 34 |
| Reports - Evaluative | 10 |
| Dissertations/Theses -… | 3 |
| Reports - Descriptive | 2 |
| Tests/Questionnaires | 1 |
Education Level
| Higher Education | 4 |
| Elementary Education | 3 |
| Grade 4 | 3 |
| Elementary Secondary Education | 2 |
| Postsecondary Education | 2 |
| Grade 3 | 1 |
| Grade 5 | 1 |
| Grade 6 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| High Schools | 1 |
| More ▼ | |
Audience
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Quinn, David M.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2021
The estimation of test score "gaps" and gap trends plays an important role in monitoring educational inequality. Researchers decompose gaps and gap changes into within- and between-school portions to generate evidence on the role schools play in shaping these inequalities. However, existing decomposition methods assume an equal-interval…
Descriptors: Scores, Tests, Achievement Gap, Equal Education
Gu, Zhengguo; Emons, Wilco H. M.; Sijtsma, Klaas – Journal of Educational and Behavioral Statistics, 2021
Clinical, medical, and health psychologists use difference scores obtained from pretest--posttest designs employing the same test to assess intraindividual change possibly caused by an intervention addressing, for example, anxiety, depression, eating disorder, or addiction. Reliability of difference scores is important for interpreting observed…
Descriptors: Test Reliability, Scores, Pretests Posttests, Computation
DeCarlo, Lawrence T. – Journal of Educational Measurement, 2023
A conceptualization of multiple-choice exams in terms of signal detection theory (SDT) leads to simple measures of item difficulty and item discrimination that are closely related to, but also distinct from, those used in classical item analysis (CIA). The theory defines a "true split," depending on whether or not examinees know an item,…
Descriptors: Multiple Choice Tests, Test Items, Item Analysis, Test Wiseness
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Cheng, Ying; Liu, Cheng – Journal of Educational Measurement, 2016
For a certification, licensure, or placement exam, allowing examinees to take multiple attempts at the test could effectively change the pass rate. Change in the pass rate can occur without any change in the underlying latent trait, and can be an artifact of multiple attempts and imperfect reliability of the test. By deriving formulae to compute…
Descriptors: Testing, Computation, Change, Simulation
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Andersson, Björn; Xin, Tao – Educational and Psychological Measurement, 2018
In applications of item response theory (IRT), an estimate of the reliability of the ability estimates or sum scores is often reported. However, analytical expressions for the standard errors of the estimators of the reliability coefficients are not available in the literature and therefore the variability associated with the estimated reliability…
Descriptors: Item Response Theory, Test Reliability, Test Items, Scores
Gorard, Stephen – International Journal of Research & Method in Education, 2015
This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…
Descriptors: Effect Size, Computation, Comparative Analysis, Simulation
Dimitrov, Dimiter M. – Measurement and Evaluation in Counseling and Development, 2017
This article offers an approach to examining differential item functioning (DIF) under its item response theory (IRT) treatment in the framework of confirmatory factor analysis (CFA). The approach is based on integrating IRT- and CFA-based testing of DIF and using bias-corrected bootstrap confidence intervals with a syntax code in Mplus.
Descriptors: Test Bias, Item Response Theory, Factor Analysis, Evaluation Methods
Lee, Wooyeol; Cho, Sun-Joo – Applied Measurement in Education, 2017
Utilizing a longitudinal item response model, this study investigated the effect of item parameter drift (IPD) on item parameters and person scores via a Monte Carlo study. Item parameter recovery was investigated for various IPD patterns in terms of bias and root mean-square error (RMSE), and percentage of time the 95% confidence interval covered…
Descriptors: Item Response Theory, Test Items, Bias, Computation
Kogar, Hakan – International Journal of Assessment Tools in Education, 2018
The aim of this simulation study, determine the relationship between true latent scores and estimated latent scores by including various control variables and different statistical models. The study also aimed to compare the statistical models and determine the effects of different distribution types, response formats and sample sizes on latent…
Descriptors: Simulation, Context Effect, Computation, Statistical Analysis
Shang, Yi; VanIwaarden, Adam; Betebenner, Damian W. – Educational Measurement: Issues and Practice, 2015
In this study, we examined the impact of covariate measurement error (ME) on the estimation of quantile regression and student growth percentiles (SGPs), and find that SGPs tend to be overestimated among students with higher prior achievement and underestimated among those with lower prior achievement, a problem we describe as ME endogeneity in…
Descriptors: Error of Measurement, Regression (Statistics), Achievement Gains, Students
McCaffrey, Daniel F.; Castellano, Katherine E.; Lockwood, J. R. – Educational Measurement: Issues and Practice, 2015
Student growth percentiles (SGPs) express students' current observed scores as percentile ranks in the distribution of scores among students with the same prior-year scores. A common concern about SGPs at the student level, and mean or median SGPs (MGPs) at the aggregate level, is potential bias due to test measurement error (ME). Shang,…
Descriptors: Error of Measurement, Accuracy, Achievement Gains, Students
van der Palm, Daniël W.; van der Ark, L. Andries; Sijtsma, Klaas – Journal of Educational Measurement, 2014
The latent class reliability coefficient (LCRC) is improved by using the divisive latent class model instead of the unrestricted latent class model. This results in the divisive latent class reliability coefficient (DLCRC), which unlike LCRC avoids making subjective decisions about the best solution and thus avoids judgment error. A computational…
Descriptors: Test Reliability, Scores, Computation, Simulation

Peer reviewed
Direct link
