NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Daniel Y.; Harring, Jeffrey R.; Stapleton, Laura M. – Journal of Experimental Education, 2019
Respondent attrition is a common problem in national longitudinal panel surveys. To make full use of the data, weights are provided to account for attrition. Weight adjustments are based on sampling design information and data from the base year; information from subsequent waves is typically not utilized. Alternative methods to address bias from…
Descriptors: Longitudinal Studies, Research Methodology, Research Problems, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Suero, Manuel; Privado, Jesús; Botella, Juan – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…
Descriptors: Evaluation Methods, Theories, Simulation, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Peer reviewed Peer reviewed
Muthen, Bengt; Joreskog, Karl G. – Evaluation Review, 1983
Selectivity problems are discussed in terms of a general model that is estimated by the maximum likelihood method. Both single-group and multiple-group analyses are considered. An extension of the general model to latent variable models is discussed. (Author/PN)
Descriptors: Mathematical Models, Maximum Likelihood Statistics, Quasiexperimental Design, Research Methodology
Peer reviewed Peer reviewed
Enders, Craig K. – Educational and Psychological Measurement, 2001
Examined the performance of a recently available full information maximum likelihood (FIML) estimator in a multiple regression model with missing data using Monte Carlo simulation and considering the effects of four independent variables. Results indicate that FIML estimation was superior to that of three ad hoc techniques, with less bias and less…
Descriptors: Estimation (Mathematics), Mathematical Models, Maximum Likelihood Statistics, Monte Carlo Methods
Kolen, Michael J.; Whitney, Douglas R. – 1978
The application of latent trait theory to classroom tests necessitates the use of small sample sizes for parameter estimation. Computer generated data were used to assess the accuracy of estimation of the slope and location parameters in the two parameter logistic model with fixed abilities and varying small sample sizes. The maximum likelihood…
Descriptors: Difficulty Level, Item Analysis, Latent Trait Theory, Mathematical Models
Peer reviewed Peer reviewed
Albert, James H. – Journal of Educational Statistics, 1992
Estimating item parameters from a two-parameter normal ogive model is considered using Gibbs sampling to simulate draws from the joint posterior distribution of ability and item parameters. The method gives marginal posterior density estimates for any parameter of interest, as illustrated using data from a 33-item mathematics placement…
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)