NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Grade 41
Audience
Laws, Policies, & Programs
Assessments and Surveys
Trends in International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Huibin Zhang; Zuchao Shen; Walter L. Leite – Journal of Experimental Education, 2025
Cluster-randomized trials have been widely used to evaluate the treatment effects of interventions on student outcomes. When interventions are implemented by teachers, researchers need to account for the nested structure in schools (i.e., students are nested within teachers nested within schools). Schools usually have a very limited number of…
Descriptors: Sample Size, Multivariate Analysis, Randomized Controlled Trials, Correlation
Ismail Dilek – ProQuest LLC, 2022
Hierarchical data is often observed in education data. Analyzing such data with Multilevel Modeling becomes crucial to understanding the relationship at the individual and group levels. However, one of the most significant problems with this kind of data is small sample sizes and very low Intraclass Correlations. The multivariate Latent Covariate…
Descriptors: Education, Data, Hierarchical Linear Modeling, Methods
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yesiltas, Gonca; Paek, Insu – Educational and Psychological Measurement, 2020
A log-linear model (LLM) is a well-known statistical method to examine the relationship among categorical variables. This study investigated the performance of LLM in detecting differential item functioning (DIF) for polytomously scored items via simulations where various sample sizes, ability mean differences (impact), and DIF types were…
Descriptors: Simulation, Sample Size, Item Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Journal of Experimental Education, 2018
Small samples are common in growth models due to financial and logistical difficulties of following people longitudinally. For similar reasons, longitudinal studies often contain missing data. Though full information maximum likelihood (FIML) is popular to accommodate missing data, the limited number of studies in this area have found that FIML…
Descriptors: Growth Models, Sampling, Sample Size, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M.; Stapleton, Laura M. – Educational Psychology Review, 2016
Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Sample Size, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Tipton, Elizabeth; Pustejovsky, James E. – Journal of Educational and Behavioral Statistics, 2015
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance…
Descriptors: Meta Analysis, Effect Size, Computation, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chang, Chi – Society for Research on Educational Effectiveness, 2015
It is known that interventions are hard to assign randomly to subjects in social psychological studies, because randomized control is difficult to implement strictly and precisely. Thus, in nonexperimental studies and observational studies, controlling the impact of covariates on the dependent variables and addressing the robustness of the…
Descriptors: Job Satisfaction, Intervention, Sample Size, Weighted Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xin; Beretvas, S. Natasha – Structural Equation Modeling: A Multidisciplinary Journal, 2013
This simulation study investigated use of the multilevel structural equation model (MLSEM) for handling measurement error in both mediator and outcome variables ("M" and "Y") in an upper level multilevel mediation model. Mediation and outcome variable indicators were generated with measurement error. Parameter and standard…
Descriptors: Sample Size, Structural Equation Models, Simulation, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Fan; Moore, E. Whitney G.; Kinai, Richard; Crowe, Kelly S.; Schoemann, Alexander M.; Little, Todd D. – International Journal of Behavioral Development, 2014
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This article explores this question by using…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chou, Yeh-Tai; Wang, Wen-Chung – Educational and Psychological Measurement, 2010
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
Descriptors: Test Length, Sample Size, Correlation, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Furlow, Carolyn F.; Ross, Terris Raiford; Gagne, Phill – Applied Psychological Measurement, 2009
Douglas, Roussos, and Stout introduced the concept of differential bundle functioning (DBF) for identifying the underlying causes of differential item functioning (DIF). In this study, reference group was simulated to have higher mean ability than the focal group on a nuisance dimension, resulting in DIF for each of the multidimensional items…
Descriptors: Test Bias, Test Items, Reference Groups, Simulation
Previous Page | Next Page ยป
Pages: 1  |  2