NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ethan C. Brown; Mohammed A. A. Abulela – Practical Assessment, Research & Evaluation, 2025
Moderated multiple regression (MMR) has become a fundamental tool for applied researchers, since many effects are expected to vary based on other variables. However, the inherent complexity of MMR creates formidable challenges for adequately performing power analysis on interaction effects to ensure reliable and replicable research results. Prior…
Descriptors: Statistical Analysis, Multiple Regression Analysis, Models, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Tipton, Elizabeth; Pustejovsky, James E. – Journal of Educational and Behavioral Statistics, 2015
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance…
Descriptors: Meta Analysis, Effect Size, Computation, Robustness (Statistics)
Andrade Brito, Fernanda A. – ProQuest LLC, 2017
Nursing programs across the United States (U.S.) rely upon simulation to complement or substitute for traditional clinical experiences. The purpose of this secondary analysis study is to use de-identified National Nursing Education Network (NNERN) (2015-2016) survey data of nursing students who participated in simulation to examine which selected…
Descriptors: Nursing Education, Sample Size, Multiple Regression Analysis, Clinical Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Psychometrika, 2007
The underlying statistical models for multiple regression analysis are typically attributed to two types of modeling: fixed and random. The procedures for calculating power and sample size under the fixed regression models are well known. However, the literature on random regression models is limited and has been confined to the case of all…
Descriptors: Sample Size, Monte Carlo Methods, Multiple Regression Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Raymond, Mark R.; Roberts, Dennis M. – Educational and Psychological Measurement, 1987
Data were simulated to conform to covariance patterns taken from personnel selection literature. Incomplete data matrices were treated by four methods. Treated matrices were subjected to multiple regression analyses. Resulting regression equations were compared to equations from original, complete data. Results supported using covariate…
Descriptors: Data Analysis, Matrices, Multiple Regression Analysis, Personnel Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Lei, Pui-Wa; Chen, Shu-Ying; Yu, Lan – Journal of Educational Measurement, 2006
Mantel-Haenszel and SIBTEST, which have known difficulty in detecting non-unidirectional differential item functioning (DIF), have been adapted with some success for computerized adaptive testing (CAT). This study adapts logistic regression (LR) and the item-response-theory-likelihood-ratio test (IRT-LRT), capable of detecting both unidirectional…
Descriptors: Evaluation Methods, Test Bias, Computer Assisted Testing, Multiple Regression Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Long, Jeffrey D. – Psychological Methods, 2005
Often quantitative data in the social sciences have only ordinal justification. Problems of interpretation can arise when least squares multiple regression (LSMR) is used with ordinal data. Two ordinal alternatives are discussed, dominance-based ordinal multiple regression (DOMR) and proportional odds multiple regression. The Q[superscript 2]…
Descriptors: Simulation, Social Science Research, Error of Measurement, Least Squares Statistics