NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hans-Peter Piepho; Johannes Forkman; Waqas Ahmed Malik – Research Synthesis Methods, 2024
Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for…
Descriptors: Maximum Likelihood Statistics, Evidence, Networks, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Korevaar, Elizabeth; Turner, Simon L.; Forbes, Andrew B.; Karahalios, Amalia; Taljaard, Monica; McKenzie, Joanne E. – Research Synthesis Methods, 2023
Interrupted time series (ITS) are often meta-analysed to inform public health and policy decisions but examination of the statistical methods for ITS analysis and meta-analysis in this context is limited. We simulated meta-analyses of ITS studies with continuous outcome data, analysed the studies using segmented linear regression with two…
Descriptors: Meta Analysis, Maximum Likelihood Statistics, Factor Analysis, Public Health
Peer reviewed Peer reviewed
Direct linkDirect link
Langan, Dean; Higgins, Julian P. T.; Jackson, Dan; Bowden, Jack; Veroniki, Areti Angeliki; Kontopantelis, Evangelos; Viechtbauer, Wolfgang; Simmonds, Mark – Research Synthesis Methods, 2019
Studies combined in a meta-analysis often have differences in their design and conduct that can lead to heterogeneous results. A random-effects model accounts for these differences in the underlying study effects, which includes a heterogeneity variance parameter. The DerSimonian-Laird method is often used to estimate the heterogeneity variance,…
Descriptors: Simulation, Meta Analysis, Health, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose – Research Synthesis Methods, 2017
Network meta-analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta-analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between-study heterogeneity. Models for network meta-analysis with random…
Descriptors: Meta Analysis, Network Analysis, Comparative Analysis, Outcomes of Treatment
Peer reviewed Peer reviewed
Direct linkDirect link
Veroniki, Areti Angeliki; Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian P. T.; Langan, Dean; Salanti, Georgia – Research Synthesis Methods, 2016
Meta-analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between-study variability, which is typically modelled using a between-study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between-study variance,…
Descriptors: Meta Analysis, Methods, Computation, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Trikalinos, Thomas A.; Hoaglin, David C.; Small, Kevin M.; Terrin, Norma; Schmid, Christopher H. – Research Synthesis Methods, 2014
Existing methods for meta-analysis of diagnostic test accuracy focus primarily on a single index test. We propose models for the joint meta-analysis of studies comparing multiple index tests on the same participants in paired designs. These models respect the grouping of data by studies, account for the within-study correlation between the tests'…
Descriptors: Meta Analysis, Diagnostic Tests, Accuracy, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pustejovsky, James E.; Hedges, Larry V.; Shadish, William R. – Journal of Educational and Behavioral Statistics, 2014
In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general…
Descriptors: Hierarchical Linear Modeling, Effect Size, Maximum Likelihood Statistics, Computation
Peer reviewed Peer reviewed
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Educational and Psychological Measurement, 2001
Assessed five procedures for estimating a common risk difference in a set of independent 2 x 2 tables through Monte Carlo simulation in terms of bias, efficiency, confidence level adjustment, and statistical power. The maximum likelihood estimator showed best performance, followed closely by the Cochran (W. Cochran, 1954) and Mantel-Haenszel (N.…
Descriptors: Estimation (Mathematics), Maximum Likelihood Statistics, Meta Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Christie, Christina A. – American Journal of Evaluation, 2007
Using a set of scenarios derived from actual evaluation studies, this simulation study examines the reported influence of evaluation information on decision makers' potential actions. Each scenario described a context where one of three types of evaluation information (large-scale study data, case study data, or anecdotal accounts) is presented…
Descriptors: Simulation, Evaluation Methods, Information Utilization, Evaluation Utilization