Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 12 |
Descriptor
| Bayesian Statistics | 12 |
| Measurement | 12 |
| Simulation | 12 |
| Models | 6 |
| Comparative Analysis | 5 |
| Item Response Theory | 4 |
| Probability | 4 |
| Computation | 3 |
| Computer Software | 3 |
| Data Analysis | 3 |
| Monte Carlo Methods | 3 |
| More ▼ | |
Source
Author
| Shi, Ning-Zhong | 2 |
| Tao, Jian | 2 |
| Wang, Chun | 2 |
| Zhang, Xue | 2 |
| Cao, Jing | 1 |
| Chu, Haitao | 1 |
| Fay, Derek M. | 1 |
| Feller, Avi | 1 |
| Harring, Jeffery R. | 1 |
| Kenneth A. Bollen | 1 |
| Kieftenbeld, Vincent | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 10 |
| Reports - Research | 8 |
| Reports - Descriptive | 2 |
| Dissertations/Theses -… | 1 |
| Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| Trends in International… | 1 |
What Works Clearinghouse Rating
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Journal of Educational Measurement, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Zhang, Xue; Tao, Jian; Wang, Chun; Shi, Ning-Zhong – Grantee Submission, 2019
Model selection is important in any statistical analysis, and the primary goal is to find the preferred (or most parsimonious) model, based on certain criteria, from a set of candidate models given data. Several recent publications have employed the deviance information criterion (DIC) to do model selection among different forms of multilevel item…
Descriptors: Bayesian Statistics, Item Response Theory, Measurement, Models
Man, Kaiwen; Harring, Jeffery R.; Ouyang, Yunbo; Thomas, Sarah L. – International Journal of Testing, 2018
Many important high-stakes decisions--college admission, academic performance evaluation, and even job promotion--depend on accurate and reliable scores from valid large-scale assessments. However, examinees sometimes cheat by copying answers from other test-takers or practicing with test items ahead of time, which can undermine the effectiveness…
Descriptors: Reaction Time, High Stakes Tests, Test Wiseness, Cheating
Miratrix, Luke; Feller, Avi; Pillai, Natesh; Pati, Debdeep – Society for Research on Educational Effectiveness, 2016
Modeling the distribution of site level effects is an important problem, but it is also an incredibly difficult one. Current methods rely on distributional assumptions in multilevel models for estimation. There it is hoped that the partial pooling of site level estimates with overall estimates, designed to take into account individual variation as…
Descriptors: Probability, Models, Statistical Distributions, Bayesian Statistics
Si, Yajuan; Reiter, Jerome P. – Journal of Educational and Behavioral Statistics, 2013
In many surveys, the data comprise a large number of categorical variables that suffer from item nonresponse. Standard methods for multiple imputation, like log-linear models or sequential regression imputation, can fail to capture complex dependencies and can be difficult to implement effectively in high dimensions. We present a fully Bayesian,…
Descriptors: Nonparametric Statistics, Bayesian Statistics, Measurement, Evaluation Methods
Wandler, Damian V. – ProQuest LLC, 2010
Generalized fiducial inference is a powerful tool for many difficult problems. Based on an extension of R. A. Fisher's work, we used generalized fiducial inference for two extreme value problems and a multiple comparison procedure. The first extreme value problem is dealing with the generalized Pareto distribution. The generalized Pareto…
Descriptors: Comparative Analysis, Probability, Inferences, Simulation
Poon, Wai-Yin; Wang, Hai-Bin – Psychometrika, 2010
A new class of parametric models that generalize the multivariate probit model and the errors-in-variables model is developed to model and analyze ordinal data. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. A hybrid Gibbs sampler is developed to estimate the model parameters. To…
Descriptors: Correlation, Psychometrics, Models, Measurement
Cao, Jing; Stokes, S. Lynne; Zhang, Song – Journal of Educational and Behavioral Statistics, 2010
We develop a Bayesian hierarchical model for the analysis of ordinal data from multirater ranking studies. The model for a rater's score includes four latent factors: one is a latent item trait determining the true order of items and the other three are the rater's performance characteristics, including bias, discrimination, and measurement error…
Descriptors: Bayesian Statistics, Data Analysis, Bias, Measurement
Kieftenbeld, Vincent; Natesan, Prathiba – Applied Psychological Measurement, 2012
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Descriptors: Test Length, Markov Processes, Item Response Theory, Monte Carlo Methods

Peer reviewed
Direct link
