NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Hosseinzadeh, Mostafa – ProQuest LLC, 2021
In real-world situations, multidimensional data may appear on large-scale tests or attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this study was to investigate the influence of structure complexity magnitude of…
Descriptors: Item Response Theory, Models, Simulation, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fu, Jianbin – ETS Research Report Series, 2019
A maximum marginal likelihood estimation with an expectation-maximization algorithm has been developed for estimating multigroup or mixture multidimensional item response theory models using the generalized partial credit function, graded response function, and 3-parameter logistic function. The procedure includes the estimation of item…
Descriptors: Maximum Likelihood Statistics, Mathematics, Item Response Theory, Expectation
Peer reviewed Peer reviewed
Direct linkDirect link
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao – Educational and Psychological Measurement, 2013
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Descriptors: Item Response Theory, Computation, Matrices, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini – Psychometrika, 2012
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
Descriptors: Geometric Concepts, Computation, Probability, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Wothke, Werner; Burket, George; Chen, Li-Sue; Gao, Furong; Shu, Lianghua; Chia, Mike – Journal of Educational and Behavioral Statistics, 2011
It has been known for some time that item response theory (IRT) models may exhibit a likelihood function of a respondent's ability which may have multiple modes, flat modes, or both. These conditions, often associated with guessing of multiple-choice (MC) questions, can introduce uncertainty and bias to ability estimation by maximum likelihood…
Descriptors: Educational Assessment, Item Response Theory, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hagglund, Gosta; Larsson, Rolf – Journal of Educational and Behavioral Statistics, 2006
In psychometrics, it is often the case that one encounters data that may not be considered random but selected in a systematic way according to some explanatory variable. In this article, maximum likelihood estimation is considered when data are supposed to arise from a bivariate normal distribution that is truncated in an extreme way. Two methods…
Descriptors: Psychometrics, Correlation, Computation, Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Galindo-Garre, Francisca; Vermunt, Jeroen K. – Psychometrika, 2004
This paper presents a row-column (RC) association model in which the estimated row and column scores are forced to be in agreement with a priori specified ordering. Two efficient algorithms for finding the order-restricted maximum likelihood (ML) estimates are proposed and their reliability under different degrees of association is investigated by…
Descriptors: Mathematics, Test Reliability, Computation, Testing