Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 12 |
Descriptor
| Computation | 12 |
| Hierarchical Linear Modeling | 12 |
| Simulation | 12 |
| Statistical Analysis | 5 |
| Error of Measurement | 4 |
| Sample Size | 4 |
| Meta Analysis | 3 |
| Monte Carlo Methods | 3 |
| Accuracy | 2 |
| Achievement Tests | 2 |
| Comparative Analysis | 2 |
| More ▼ | |
Source
Author
| Baker, Rose | 1 |
| Beretvas, S. Natasha | 1 |
| Bowden, Jack | 1 |
| Chan, Wendy | 1 |
| Dongho Shin | 1 |
| Ferron, John M. | 1 |
| Frey, Andreas | 1 |
| Hecht, Martin | 1 |
| Hedges, Larry V. | 1 |
| Jackson, Dan | 1 |
| Jiang, Yanlin | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 10 |
| Reports - Research | 9 |
| Dissertations/Theses -… | 1 |
| Numerical/Quantitative Data | 1 |
| Reports - Descriptive | 1 |
| Reports - Evaluative | 1 |
Education Level
| Secondary Education | 2 |
| Elementary Secondary Education | 1 |
| Grade 9 | 1 |
| High Schools | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Peer reviewedDongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Mang, Julia; Küchenhoff, Helmut; Meinck, Sabine; Prenzel, Manfred – Large-scale Assessments in Education, 2021
Background: Standard methods for analysing data from large-scale assessments (LSA) cannot merely be adopted if hierarchical (or multilevel) regression modelling should be applied. Currently various approaches exist; they all follow generally a design-based model of estimation using the pseudo maximum likelihood method and adjusted weights for the…
Descriptors: Sampling, Hierarchical Linear Modeling, Simulation, Scaling
Chan, Wendy – Journal of Educational and Behavioral Statistics, 2018
Policymakers have grown increasingly interested in how experimental results may generalize to a larger population. However, recently developed propensity score-based methods are limited by small sample sizes, where the experimental study is generalized to a population that is at least 20 times larger. This is particularly problematic for methods…
Descriptors: Computation, Generalization, Probability, Sample Size
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2016
The impact of misspecifying covariance matrices at the second and third levels of the three-level model is evaluated. Results indicate that ignoring existing covariance has no effect on the treatment effect estimate. In addition, the between-case variance estimates are unbiased when covariance is either modeled or ignored. If the research interest…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Computation, Statistical Bias
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Wagler, Amy E. – Journal of Educational and Behavioral Statistics, 2014
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Descriptors: Hierarchical Linear Modeling, Cluster Grouping, Heterogeneous Grouping, Monte Carlo Methods
Hecht, Martin; Weirich, Sebastian; Siegle, Thilo; Frey, Andreas – Educational and Psychological Measurement, 2015
The selection of an appropriate booklet design is an important element of large-scale assessments of student achievement. Two design properties that are typically optimized are the "balance" with respect to the positions the items are presented and with respect to the mutual occurrence of pairs of items in the same booklet. The purpose…
Descriptors: Measurement, Computation, Test Format, Test Items
Pustejovsky, James E.; Hedges, Larry V.; Shadish, William R. – Journal of Educational and Behavioral Statistics, 2014
In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general…
Descriptors: Hierarchical Linear Modeling, Effect Size, Maximum Likelihood Statistics, Computation
Li, Deping; Oranje, Andreas; Jiang, Yanlin – ETS Research Report Series, 2007
The hierarchical latent regression model (HLRM) is a flexible framework for estimating group-level proficiency while taking into account the complex sample designs often found in large-scale educational surveys. A complex assessment design in which information is collected at different levels (such as student, school, and district), the model also…
Descriptors: Hierarchical Linear Modeling, Regression (Statistics), Computation, Comparative Analysis

Direct link
