Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 13 |
| Since 2017 (last 10 years) | 19 |
| Since 2007 (last 20 years) | 35 |
Descriptor
| Factor Analysis | 47 |
| Sample Size | 47 |
| Simulation | 47 |
| Comparative Analysis | 12 |
| Error of Measurement | 12 |
| Models | 11 |
| Computation | 10 |
| Evaluation Methods | 10 |
| Goodness of Fit | 10 |
| Monte Carlo Methods | 10 |
| Statistical Analysis | 10 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 42 |
| Reports - Research | 37 |
| Reports - Evaluative | 6 |
| Speeches/Meeting Papers | 4 |
| Dissertations/Theses -… | 2 |
| Reports - Descriptive | 2 |
Education Level
| Adult Education | 1 |
| High Schools | 1 |
Audience
Location
| Hong Kong | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| International Adult Literacy… | 1 |
| Law School Admission Test | 1 |
| National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Tugay Kaçak; Abdullah Faruk Kiliç – International Journal of Assessment Tools in Education, 2025
Researchers continue to choose PCA in scale development and adaptation studies because it is the default setting and overestimates measurement quality. When PCA is utilized in investigations, the explained variance and factor loadings can be exaggerated. PCA, in contrast to the models given in the literature, should be investigated in…
Descriptors: Factor Analysis, Monte Carlo Methods, Mathematical Models, Sample Size
Dexin Shi; Bo Zhang; Ren Liu; Zhehan Jiang – Educational and Psychological Measurement, 2024
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and…
Descriptors: Goodness of Fit, Factor Analysis, Simulation, Accuracy
Christopher E. Shank – ProQuest LLC, 2024
This dissertation compares the performance of equivalence test (EQT) and null hypothesis test (NHT) procedures for identifying invariant and noninvariant factor loadings under a range of experimental manipulations. EQT is the statistically appropriate approach when the research goal is to find evidence of group similarity rather than group…
Descriptors: Factor Analysis, Goodness of Fit, Intervals, Comparative Analysis
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Goretzko, David – Educational and Psychological Measurement, 2022
Determining the number of factors in exploratory factor analysis is arguably the most crucial decision a researcher faces when conducting the analysis. While several simulation studies exist that compare various so-called factor retention criteria under different data conditions, little is known about the impact of missing data on this process.…
Descriptors: Factor Analysis, Research Problems, Data, Prediction
Jehanzeb Rashid Cheema – Journal of Education in Muslim Societies, 2024
This study explores the relationship between the Spiral Dynamics and the 3H (head, heart, hands) models of human growth and development, using constructs such as empathy, moral reasoning, forgiveness, and community mindedness that have been shown to have implications for education. The specific research question is, "Can a combination of…
Descriptors: Correlation, Factor Analysis, Computer Software, Moral Values
Xiao, Leifeng; Hau, Kit-Tai – Applied Measurement in Education, 2023
We compared coefficient alpha with five alternatives (omega total, omega RT, omega h, GLB, and coefficient H) in two simulation studies. Results showed for unidimensional scales, (a) all indices except omega h performed similarly well for most conditions; (b) alpha is still good; (c) GLB and coefficient H overestimated reliability with small…
Descriptors: Test Theory, Test Reliability, Factor Analysis, Test Length
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Fu, Yuanshu; Wen, Zhonglin; Wang, Yang – Educational and Psychological Measurement, 2022
Composite reliability, or coefficient omega, can be estimated using structural equation modeling. Composite reliability is usually estimated under the basic independent clusters model of confirmatory factor analysis (ICM-CFA). However, due to the existence of cross-loadings, the model fit of the exploratory structural equation model (ESEM) is…
Descriptors: Comparative Analysis, Structural Equation Models, Factor Analysis, Reliability
Beauducel, André; Hilger, Norbert – Educational and Psychological Measurement, 2022
In the context of Bayesian factor analysis, it is possible to compute plausible values, which might be used as covariates or predictors or to provide individual scores for the Bayesian latent variables. Previous simulation studies ascertained the validity of mean plausible values by the mean squared difference of the mean plausible values and the…
Descriptors: Bayesian Statistics, Factor Analysis, Prediction, Simulation
Sahin Kursad, Merve; Cokluk Bokeoglu, Omay; Cikrikci, Rahime Nukhet – International Journal of Assessment Tools in Education, 2022
Item parameter drift (IPD) is the systematic differentiation of parameter values of items over time due to various reasons. If it occurs in computer adaptive tests (CAT), it causes errors in the estimation of item and ability parameters. Identification of the underlying conditions of this situation in CAT is important for estimating item and…
Descriptors: Item Analysis, Computer Assisted Testing, Test Items, Error of Measurement
Guler, Gul; Cikrikci, Rahime Nukhet – International Journal of Assessment Tools in Education, 2022
The purpose of this study was to investigate the Type I Error findings and power rates of the methods used to determine dimensionality in unidimensional and bidimensional psychological constructs for various conditions (characteristic of the distribution, sample size, length of the test, and interdimensional correlation) and to examine the joint…
Descriptors: Comparative Analysis, Error of Measurement, Decision Making, Factor Analysis
Kiliç, Abdullah Faruk; Uysal, Ibrahim – Turkish Journal of Education, 2019
In this study, the purpose is to compare factor retention methods under simulation conditions. For this purpose, simulations conditions with a number of factors (1, 2 [simple]), sample sizes (250, 1.000, and 3.000), number of items (20, 30), average factor loading (0.50, 0.70), and correlation matrix (Pearson Product Moment [PPM] and Tetrachoric)…
Descriptors: Simulation, Factor Structure, Sample Size, Test Length
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement

Peer reviewed
Direct link
