NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Adult Education1
Audience
Researchers1
Location
Germany1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Korevaar, Elizabeth; Turner, Simon L.; Forbes, Andrew B.; Karahalios, Amalia; Taljaard, Monica; McKenzie, Joanne E. – Research Synthesis Methods, 2023
Interrupted time series (ITS) are often meta-analysed to inform public health and policy decisions but examination of the statistical methods for ITS analysis and meta-analysis in this context is limited. We simulated meta-analyses of ITS studies with continuous outcome data, analysed the studies using segmented linear regression with two…
Descriptors: Meta Analysis, Maximum Likelihood Statistics, Factor Analysis, Public Health
Peer reviewed Peer reviewed
Direct linkDirect link
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hoofs, Huub; van de Schoot, Rens; Jansen, Nicole W. H.; Kant, IJmert – Educational and Psychological Measurement, 2018
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian…
Descriptors: Goodness of Fit, Bayesian Statistics, Factor Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl; Troche, Stefan – Educational and Psychological Measurement, 2018
In confirmatory factor analysis quite similar models of measurement serve the detection of the difficulty factor and the factor due to the item-position effect. The item-position effect refers to the increasing dependency among the responses to successively presented items of a test whereas the difficulty factor is ascribed to the wide range of…
Descriptors: Investigations, Difficulty Level, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zeller, Florian; Krampen, Dorothea; Reiß, Siegbert; Schweizer, Karl – Educational and Psychological Measurement, 2017
The item-position effect describes how an item's position within a test, that is, the number of previous completed items, affects the response to this item. Previously, this effect was represented by constraints reflecting simple courses, for example, a linear increase. Due to the inflexibility of these representations our aim was to examine…
Descriptors: Goodness of Fit, Simulation, Factor Analysis, Intelligence Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Fan; Moore, E. Whitney G.; Kinai, Richard; Crowe, Kelly S.; Schoemann, Alexander M.; Little, Todd D. – International Journal of Behavioral Development, 2014
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This article explores this question by using…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, Andre – Applied Psychological Measurement, 2013
The problem of factor score indeterminacy implies that the factor and the error scores cannot be completely disentangled in the factor model. It is therefore proposed to compute Harman's factor score predictor that contains an additive combination of factor and error variance. This additive combination is discussed in the framework of classical…
Descriptors: Factor Analysis, Predictor Variables, Reliability, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Li – Psychometrika, 2010
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
Descriptors: Quality of Life, Factor Structure, Factor Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Peer reviewed Peer reviewed
Bernaards, Coen A.; Sijtsma, Klaas – Multivariate Behavioral Research, 2000
Using simulation, studied the influence of each of 12 imputation methods and 2 methods using the EM algorithm on the results of maximum likelihood factor analysis as compared with results from the complete data factor analysis (no missing scores). Discusses why EM methods recovered complete data factor loadings better than imputation methods. (SLD)
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Questionnaires, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; Monahan, Patrick – Applied Measurement in Education, 2008
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
Descriptors: Monte Carlo Methods, Factor Analysis, Generalization, Methods
Peer reviewed Peer reviewed
Finkbeiner, Carl – Psychometrika, 1979
A maximum likelihood method of estimating the parameters of the multiple factor model when data are missing from the sample is presented. A Monte Carlo study compares the method with five heuristic methods of dealing with the problem. The present method shows some advantage in accuracy of estimation. (Author/CTM)
Descriptors: Factor Analysis, Mathematical Models, Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, Andre; Herzberg, Philipp Yorck – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Classification, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses
Previous Page | Next Page »
Pages: 1  |  2