Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 12 |
Descriptor
| Error Patterns | 15 |
| Sample Size | 15 |
| Simulation | 15 |
| Item Response Theory | 7 |
| Evaluation Methods | 6 |
| Models | 6 |
| Comparative Analysis | 4 |
| Computation | 4 |
| Correlation | 4 |
| Monte Carlo Methods | 4 |
| Statistical Analysis | 4 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 15 |
| Reports - Research | 13 |
| Reports - Evaluative | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Zhang, Zhonghua; Zhao, Mingren – Journal of Educational Measurement, 2019
The present study evaluated the multiple imputation method, a procedure that is similar to the one suggested by Li and Lissitz (2004), and compared the performance of this method with that of the bootstrap method and the delta method in obtaining the standard errors for the estimates of the parameter scale transformation coefficients in item…
Descriptors: Item Response Theory, Error Patterns, Item Analysis, Simulation
Doleman, Brett; Freeman, Suzanne C.; Lund, Jonathan N.; Williams, John P.; Sutton, Alex J. – Research Synthesis Methods, 2020
This study aimed to determine for continuous outcomes dependent on baseline risk, whether funnel plot asymmetry may be due to statistical artefact rather than publication bias and evaluate a novel test to resolve this. Firstly, we conducted assessment for publication bias in nine meta-analyses of postoperative analgesics (344 trials with 25 348…
Descriptors: Outcomes of Treatment, Risk, Publications, Bias
Oshima, T. C.; Wright, Keith; White, Nick – International Journal of Testing, 2015
Raju, van der Linden, and Fleer (1995) introduced a framework for differential functioning of items and tests (DFIT) for unidimensional dichotomous models. Since then, DFIT has been shown to be a quite versatile framework as it can handle polytomous as well as multidimensional models both at the item and test levels. However, DFIT is still limited…
Descriptors: Test Bias, Item Response Theory, Test Items, Simulation
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Liang, Tie; Wells, Craig S.; Hambleton, Ronald K. – Journal of Educational Measurement, 2014
As item response theory has been more widely applied, investigating the fit of a parametric model becomes an important part of the measurement process. There is a lack of promising solutions to the detection of model misfit in IRT. Douglas and Cohen introduced a general nonparametric approach, RISE (Root Integrated Squared Error), for detecting…
Descriptors: Item Response Theory, Measurement Techniques, Nonparametric Statistics, Models
Watkins, Ann E.; Bargagliotti, Anna; Franklin, Christine – Journal of Statistics Education, 2014
Although the use of simulation to teach the sampling distribution of the mean is meant to provide students with sound conceptual understanding, it may lead them astray. We discuss a misunderstanding that can be introduced or reinforced when students who intuitively understand that "bigger samples are better" conduct a simulation to…
Descriptors: Simulation, Sampling, Sample Size, Misconceptions
Li, Ying; Rupp, Andre A. – Educational and Psychological Measurement, 2011
This study investigated the Type I error rate and power of the multivariate extension of the S - [chi][squared] statistic using unidimensional and multidimensional item response theory (UIRT and MIRT, respectively) models as well as full-information bifactor (FI-bifactor) models through simulation. Manipulated factors included test length, sample…
Descriptors: Test Length, Item Response Theory, Statistical Analysis, Error Patterns
Luh, Wei-Ming; Guo, Jiin-Huarng – Journal of Experimental Education, 2009
The sample size determination is an important issue for planning research. However, limitations in size have seldom been discussed in the literature. Thus, how to allocate participants into different treatment groups to achieve the desired power is a practical issue that still needs to be addressed when one group size is fixed. The authors focused…
Descriptors: Sample Size, Research Methodology, Evaluation Methods, Simulation
Forero, Carlos G.; Maydeu-Olivares, Alberto – Psychological Methods, 2009
The performance of parameter estimates and standard errors in estimating F. Samejima's graded response model was examined across 324 conditions. Full information maximum likelihood (FIML) was compared with a 3-stage estimator for categorical item factor analysis (CIFA) when the unweighted least squares method was used in CIFA's third stage. CIFA…
Descriptors: Factor Analysis, Least Squares Statistics, Computation, Item Response Theory
Murphy, Daniel L.; Pituch, Keenan A. – Journal of Experimental Education, 2009
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Descriptors: Sample Size, Computation, Evaluation Methods, Longitudinal Studies
Wyse, Adam E.; Mapuranga, Raymond – International Journal of Testing, 2009
Differential item functioning (DIF) analysis is a statistical technique used for ensuring the equity and fairness of educational assessments. This study formulates a new DIF analysis method using the information similarity index (ISI). ISI compares item information functions when data fits the Rasch model. Through simulations and an international…
Descriptors: Test Bias, Evaluation Methods, Test Items, Educational Assessment
Wells, Craig S.; Bolt, Daniel M. – Applied Measurement in Education, 2008
Tests of model misfit are often performed to validate the use of a particular model in item response theory. Douglas and Cohen (2001) introduced a general nonparametric approach for detecting misfit under the two-parameter logistic model. However, the statistical properties of their approach, and empirical comparisons to other methods, have not…
Descriptors: Test Length, Test Items, Monte Carlo Methods, Nonparametric Statistics
Zimmerman, Donald W. – Psicologica: International Journal of Methodology and Experimental Psychology, 2004
It is well known that the two-sample Student t test fails to maintain its significance level when the variances of treatment groups are unequal, and, at the same time, sample sizes are unequal. However, introductory textbooks in psychology and education often maintain that the test is robust to variance heterogeneity when sample sizes are equal.…
Descriptors: Sample Size, Nonparametric Statistics, Probability, Statistical Analysis
Peer reviewedBaker, Frank B. – Applied Psychological Measurement, 1993
Using simulation, the effect that misspecification of elements in the weight matrix has on estimates of basic parameters of the linear logistic test model was studied. Results indicate that, because specifying elements of the weight matrix is a subjective process, it must be done with great care. (SLD)
Descriptors: Error Patterns, Estimation (Mathematics), Item Response Theory, Matrices
Kromrey, Jeffrey D.; Rendina-Gobioff, Gianna – Educational and Psychological Measurement, 2006
The performance of methods for detecting publication bias in meta-analysis was evaluated using Monte Carlo methods. Four methods of bias detection were investigated: Begg's rank correlation, Egger's regression, funnel plot regression, and trim and fill. Five factors were included in the simulation design: number of primary studies in each…
Descriptors: Comparative Analysis, Meta Analysis, Monte Carlo Methods, Correlation

Direct link
