NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 68 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Huh, David; Zhou, Zhengyang; Mun, Eun-Young – International Journal of Behavioral Development, 2020
Latent growth models (LGMs) are an application of structural equation modeling and frequently used in developmental and clinical research to analyze change over time in longitudinal outcomes. Maximum likelihood (ML), the most common approach for estimating LGMs, can fail to converge or may produce biased estimates in complex LGMs especially in…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Longitudinal Studies, Models
Xu, Ziqian; Hai, Jiarui; Yang, Yutong; Zhang, Zhiyong – Grantee Submission, 2022
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past…
Descriptors: Social Networks, Network Analysis, Data Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kangasrääsiö, Antti; Jokinen, Jussi P. P.; Oulasvirta, Antti; Howes, Andrew; Kaski, Samuel – Cognitive Science, 2019
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional…
Descriptors: Inferences, Computation, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2018
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Difficulty Level
Weber, Sebastian; Gelman, Andrew; Lee, Daniel; Betancourt, Michael; Vehtari, Aki; Racine-Poon, Amy – Grantee Submission, 2018
Throughout the different phases of a drug development program, randomized trials are used to establish the tolerability, safety and efficacy of a candidate drug. At each stage one aims to optimize the design of future studies by extrapolation from the available evidence at the time. This includes collected trial data and relevant external data.…
Descriptors: Bayesian Statistics, Data Analysis, Drug Therapy, Pharmacology
Peer reviewed Peer reviewed
Direct linkDirect link
Pek, Jolynn; Van Zandt, Trisha – Psychology Learning and Teaching, 2020
Statistical thinking is essential to understanding the nature of scientific results as a consumer. Statistical thinking also facilitates thinking like a scientist. Instead of emphasizing a "correct" procedure for data analysis and its outcome, statistical thinking focuses on the process of data analysis. This article reviews frequentist…
Descriptors: Bayesian Statistics, Thinking Skills, Data Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D. – Cognitive Science, 2018
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference…
Descriptors: Classification, Conditioning, Inferences, Novelty (Stimulus Dimension)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Longjuan; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2015
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
Descriptors: Item Response Theory, Statistical Analysis, Goodness of Fit, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5