NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro; Zhang, Jihong – Journal of Educational Measurement, 2023
This study proposed Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were…
Descriptors: Algorithms, Simulation, Mathematics Achievement, Bayesian Statistics
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Jing Lu; Chun Wang; Jiwei Zhang; Xue Wang – Grantee Submission, 2023
Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is pivotal to properly differentiate examinees' aberrant behaviors from solution behavior to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to…
Descriptors: Bayesian Statistics, Behavior Patterns, Computer Assisted Testing, Accuracy
Peer reviewed Peer reviewed
Arminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models
Mislevy, Robert J. – 1985
Simultaneous estimation of many parameters can often be improved, sometimes dramatically so, if it is reasonable to consider one or more subsets of parameters as exchangeable members of corresponding populations. While each observation may provide limited information about the parameters it is modeled directly in terms of, it also contributes…
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Peer reviewed Peer reviewed
Albert, James H. – Journal of Educational Statistics, 1992
Estimating item parameters from a two-parameter normal ogive model is considered using Gibbs sampling to simulate draws from the joint posterior distribution of ability and item parameters. The method gives marginal posterior density estimates for any parameter of interest, as illustrated using data from a 33-item mathematics placement…
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)