NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Ryu, Ehri; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In multilevel structural equation modeling, the "standard" approach to evaluating the goodness of model fit has a potential limitation in detecting the lack of fit at the higher level. Level-specific model fit evaluation can address this limitation and is more informative in locating the source of lack of model fit. We proposed level-specific test…
Descriptors: Structural Equation Models, Evaluation Methods, Goodness of Fit, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent missing data studies have argued in favor of an "inclusive analytic strategy" that incorporates auxiliary variables into the estimation routine, and Graham (2003) outlined methods for incorporating auxiliary variables into structural equation analyses. In practice, the auxiliary variables often have missing values, so it is reasonable to…
Descriptors: Structural Equation Models, Research Methodology, Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Graham, John W. – Structural Equation Modeling: A Multidisciplinary Journal, 2003
Conventional wisdom in missing data research dictates adding variables to the missing data model when those variables are predictive of (a) missingness and (b) the variables containing missingness. However, it has recently been shown that adding variables that are correlated with variables containing missingness, whether or not they are related to…
Descriptors: Structural Equation Models, Simulation, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, Andre; Herzberg, Philipp Yorck – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Classification, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Item Response Theory, Error of Measurement