NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Jorge Salas – Journal of Educational Measurement, 2024
Despite the growing interest in incorporating response time data into item response models, there has been a lack of research investigating how the effect of speed on the probability of a correct response varies across different groups (e.g., experimental conditions) for various items (i.e., differential response time item analysis). Furthermore,…
Descriptors: Item Response Theory, Reaction Time, Models, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sunbok – Journal of Educational Measurement, 2020
In the logistic regression (LR) procedure for differential item functioning (DIF), the parameters of LR have often been estimated using maximum likelihood (ML) estimation. However, ML estimation suffers from the finite-sample bias. Furthermore, ML estimation for LR can be substantially biased in the presence of rare event data. The bias of ML…
Descriptors: Regression (Statistics), Test Bias, Maximum Likelihood Statistics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Kuhn, Jörg-Tobias; Wolgast, Anett – Journal of Educational Measurement, 2021
Van der Linden's hierarchical model for responses and response times can be used in order to infer the ability and mental speed of test takers from their responses and response times in an educational test. A standard approach for this is maximum likelihood estimation. In real-world applications, the data of some test takers might be partly…
Descriptors: Models, Reaction Time, Item Response Theory, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Chun Wang; Ping Chen; Shengyu Jiang – Journal of Educational Measurement, 2020
Many large-scale educational surveys have moved from linear form design to multistage testing (MST) design. One advantage of MST is that it can provide more accurate latent trait [theta] estimates using fewer items than required by linear tests. However, MST generates incomplete response data by design; hence, questions remain as to how to…
Descriptors: Test Construction, Test Items, Adaptive Testing, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Chen-Wei; Wang, Wen-Chung – Journal of Educational Measurement, 2017
The examinee-selected-item (ESI) design, in which examinees are required to respond to a fixed number of items in a given set of items (e.g., choose one item to respond from a pair of items), always yields incomplete data (i.e., only the selected items are answered and the others have missing data) that are likely nonignorable. Therefore, using…
Descriptors: Item Response Theory, Models, Maximum Likelihood Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Woo-yeol; Cho, Sun-Joo – Journal of Educational Measurement, 2017
Cross-level invariance in a multilevel item response model can be investigated by testing whether the within-level item discriminations are equal to the between-level item discriminations. Testing the cross-level invariance assumption is important to understand constructs in multilevel data. However, in most multilevel item response model…
Descriptors: Test Items, Item Response Theory, Item Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Meyer, J. Patrick; Setzer, J. Carl – Journal of Educational Measurement, 2009
Recent changes to federal guidelines for the collection of data on race and ethnicity allow respondents to select multiple race categories. Redefining race subgroups in this manner poses problems for research spanning both sets of definitions. NAEP long-term trends have used the single-race subgroup definitions for over thirty years. Little is…
Descriptors: Elementary Secondary Education, Federal Legislation, Simulation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Wang, Tianyou; Vispoel, Walter P. – Journal of Educational Measurement, 1998
Used simulations of computerized adaptive tests to evaluate results yielded by four commonly used ability estimation methods: maximum likelihood estimation (MLE) and three Bayesian approaches. Results show clear distinctions between MLE and Bayesian methods. (SLD)
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing
Peer reviewed Peer reviewed
Ban, Jae-Chun; Hanson, Bradley A.; Yi, Qing; Harris, Deborah J. – Journal of Educational Measurement, 2002
Compared three online pretest calibration scaling methods through simulation: (1) marginal maximum likelihood with one expectation maximization (EM) cycle (OEM) method; (2) marginal maximum likelihood with multiple EM cycles (MEM); and (3) M. Stocking's method B. MEM produced the smallest average total error in parameter estimation; OEM yielded…
Descriptors: Computer Assisted Testing, Error of Measurement, Maximum Likelihood Statistics, Online Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Meijer, Rob R. – Journal of Educational Measurement, 2004
Two new methods have been proposed to determine unexpected sum scores on sub-tests (testlets) both for paper-and-pencil tests and computer adaptive tests. A method based on a conservative bound using the hypergeometric distribution, denoted p, was compared with a method where the probability for each score combination was calculated using a…
Descriptors: Probability, Adaptive Testing, Item Response Theory, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Yuan H.; Lissitz, Robert W. – Journal of Educational Measurement, 2004
The analytically derived asymptotic standard errors (SEs) of maximum likelihood (ML) item estimates can be approximated by a mathematical function without examinees' responses to test items, and the empirically determined SEs of marginal maximum likelihood estimation (MMLE)/Bayesian item estimates can be obtained when the same set of items is…
Descriptors: Test Items, Computation, Item Response Theory, Error of Measurement