Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 8 |
| Since 2017 (last 10 years) | 19 |
| Since 2007 (last 20 years) | 23 |
Descriptor
Source
| Grantee Submission | 23 |
Author
| Cai, Li | 4 |
| Gongjun Xu | 3 |
| Chun Wang | 2 |
| Falk, Carl F. | 2 |
| Sinharay, Sandip | 2 |
| Wang, Chun | 2 |
| Xu, Gongjun | 2 |
| Zhang, Xue | 2 |
| Amanda Goodwin | 1 |
| Betancourt, Michael | 1 |
| Braithwaite, David W. | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 20 |
| Journal Articles | 3 |
| Reports - Evaluative | 2 |
| Dissertations/Theses -… | 1 |
Education Level
| Elementary Education | 2 |
| Junior High Schools | 2 |
| Middle Schools | 2 |
| Secondary Education | 2 |
| Grade 5 | 1 |
| Grade 6 | 1 |
| Grade 7 | 1 |
| Intermediate Grades | 1 |
Audience
Location
| Canada | 1 |
| United Kingdom (Wales) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Education… | 1 |
What Works Clearinghouse Rating
Matthew J. Madison; Seungwon Chung; Junok Kim; Laine P. Bradshaw – Grantee Submission, 2023
Recent developments have enabled the modeling of longitudinal assessment data in a diagnostic classification model (DCM) framework. These longitudinal DCMs were developed to provide measures of student growth on a discrete scale in the form of attribute mastery transitions, thereby supporting categorical and criterion-referenced interpretations of…
Descriptors: Models, Cognitive Measurement, Diagnostic Tests, Classification
Haiyan Liu; Wen Qu; Zhiyong Zhang; Hao Wu – Grantee Submission, 2022
Bayesian inference for structural equation models (SEMs) is increasingly popular in social and psychological sciences owing to its flexibility to adapt to more complex models and the ability to include prior information if available. However, there are two major hurdles in using the traditional Bayesian SEM in practice: (1) the information nested…
Descriptors: Bayesian Statistics, Structural Equation Models, Statistical Inference, Statistical Distributions
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Chenchen Ma; Jing Ouyang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Survey instruments and assessments are frequently used in many domains of social science. When the constructs that these assessments try to measure become multifaceted, multidimensional item response theory (MIRT) provides a unified framework and convenient statistical tool for item analysis, calibration, and scoring. However, the computational…
Descriptors: Algorithms, Item Response Theory, Scoring, Accuracy
Peer reviewedDongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Grantee Submission, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Xu, Ziqian; Hai, Jiarui; Yang, Yutong; Zhang, Zhiyong – Grantee Submission, 2022
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past…
Descriptors: Social Networks, Network Analysis, Data Analysis, Bayesian Statistics
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Cho, April E.; Wang, Chun; Zhang, Xue; Xu, Gongjun – Grantee Submission, 2020
Multidimensional Item Response Theory (MIRT) is widely used in assessment and evaluation of educational and psychological tests. It models the individual response patterns by specifying functional relationship between individuals' multiple latent traits and their responses to test items. One major challenge in parameter estimation in MIRT is that…
Descriptors: Item Response Theory, Mathematics, Statistical Inference, Maximum Likelihood Statistics
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Wang, Chun; Xu, Gongjun; Zhang, Xue – Grantee Submission, 2019
When latent variables are used as outcomes in regression analysis, a common approach that is used to solve the ignored measurement error issue is to take a multilevel perspective on item response modeling (IRT). Although recent computational advancement allow efficient and accurate estimation of multilevel IRT models, we argue that a two-stage…
Descriptors: Error of Measurement, Item Response Theory, Regression (Statistics), Evaluation Methods
Weber, Sebastian; Gelman, Andrew; Lee, Daniel; Betancourt, Michael; Vehtari, Aki; Racine-Poon, Amy – Grantee Submission, 2018
Throughout the different phases of a drug development program, randomized trials are used to establish the tolerability, safety and efficacy of a candidate drug. At each stage one aims to optimize the design of future studies by extrapolation from the available evidence at the time. This includes collected trial data and relevant external data.…
Descriptors: Bayesian Statistics, Data Analysis, Drug Therapy, Pharmacology
Dorie, Vincent; Hill, Jennifer; Shalit, Uri; Scott, Marc; Cervone, Daniel – Grantee Submission, 2018
Statisticians have made great progress in creating methods that reduce our reliance on parametric assumptions. However this explosion in research has resulted in a breadth of inferential strategies that both create opportunities for more reliable inference as well as complicate the choices that an applied researcher has to make and defend.…
Descriptors: Statistical Inference, Simulation, Causal Models, Research Methodology
Pashley, Nicole E.; Miratrix, Luke W. – Grantee Submission, 2019
In the causal inference literature, evaluating blocking from a potential outcomes perspective has two main branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Previous Page | Next Page ยป
Pages: 1 | 2
Direct link
