NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)0
Since 2007 (last 20 years)3
Audience
Location
Florida1
Laws, Policies, & Programs
Assessments and Surveys
Florida Comprehensive…1
What Works Clearinghouse Rating
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kang, Taehoon; Cohen, Allan S.; Sung, Hyun-Jung – Applied Psychological Measurement, 2009
This study examines the utility of four indices for use in model selection with nested and nonnested polytomous item response theory (IRT) models: a cross-validation index and three information-based indices. Four commonly used polytomous IRT models are considered: the graded response model, the generalized partial credit model, the partial credit…
Descriptors: Item Response Theory, Models, Selection, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Feiming; Cohen, Allan S.; Kim, Seock-Ho; Cho, Sun-Joo – Applied Psychological Measurement, 2009
This study examines model selection indices for use with dichotomous mixture item response theory (IRT) models. Five indices are considered: Akaike's information coefficient (AIC), Bayesian information coefficient (BIC), deviance information coefficient (DIC), pseudo-Bayes factor (PsBF), and posterior predictive model checks (PPMC). The five…
Descriptors: Item Response Theory, Models, Selection, Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kang, Taehoon; Cohen, Allan S. – Applied Psychological Measurement, 2007
Fit of the model to the data is important if the benefits of item response theory (IRT) are to be obtained. In this study, the authors compared model selection results using the likelihood ratio test, two information-based criteria, and two Bayesian methods. An example illustrated the potential for inconsistency in model selection depending on…
Descriptors: Simulation, Item Response Theory, Comparative Analysis, Bayesian Statistics
Kim, Seock-Ho; Cohen, Allan S. – 1999
The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…
Descriptors: Bayesian Statistics, Estimation (Mathematics), Item Response Theory, Markov Processes