NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Clayton Cohn; Surya Rayala; Caitlin Snyder; Joyce Horn Fonteles; Shruti Jain; Naveeduddin Mohammed; Umesh Timalsina; Sarah K. Burriss; Ashwin T. S.; Namrata Srivastava; Menton Deweese; Angela Eeds; Gautam Biswas – Grantee Submission, 2025
Collaborative dialogue offers rich insights into students' learning and critical thinking. This is essential for adapting pedagogical agents to students' learning and problem-solving skills in STEM+C settings. While large language models (LLMs) facilitate dynamic pedagogical interactions, potential hallucinations can undermine confidence, trust,…
Descriptors: STEM Education, Computer Science Education, Artificial Intelligence, Natural Language Processing
Cai, Zhiqiang; Gong, Yan; Qiu, Qizhi; Hu, Xiangen; Graesser, Art – Grantee Submission, 2016
AutoTutor uses conversational intelligent agents in learning environments. One of the major challenges in developing AutoTutor applications is to assess students' natural language answers to AutoTutor questions. We investigated an AutoTutor dataset with 3358 student answers to 49 AutoTutor questions. In comparisons with human ratings, we found…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Dialogs (Language), Programming
Lipschultz, Michael; Litman, Diane; Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2014
Post-problem reflective tutorial dialogues between human tutors and students are examined to predict when the tutor changed the level of abstraction from the student's preceding turn (i.e., used more general terms or more specific terms); such changes correlate with learning. Prior work examined lexical changes in abstraction. In this work, we…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Semantics, Abstract Reasoning
Ababneh, Mohammad – ProQuest LLC, 2014
A dialog system or a conversational agent provides a means for a human to interact with a computer system. Dialog systems use text, voice and other means to carry out conversations with humans in order to achieve some objective. Most dialog systems are created with specific objectives in mind and consist of preprogrammed conversations. The primary…
Descriptors: Item Response Theory, Web 2.0 Technologies, Computer System Design, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Bateman, John; Tenbrink, Thora; Farrar, Scott – Discourse Processes: A Multidisciplinary Journal, 2007
This article argues that a clear division between two sources of information--one oriented to world knowledge, the other to linguistic semantics--offers a framework within which mechanisms for modelling the highly flexible relation between language and interpretation necessary for natural discourse can be specified and empirically validated.…
Descriptors: Semantics, Linguistics, Teaching Methods, Models