NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Journal of Educational and…23
Audience
Location
New York1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
San Martín, Ernesto; González, Jorge – Journal of Educational and Behavioral Statistics, 2022
The nonequivalent groups with anchor test (NEAT) design is widely used in test equating. Under this design, two groups of examinees are administered different test forms with each test form containing a subset of common items. Because test takers from different groups are assigned only one test form, missing score data emerge by design rendering…
Descriptors: Tests, Scores, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Brauer, Kay – Journal of Educational and Behavioral Statistics, 2022
The generalized S-X[superscript 2]-test is a test of item fit for items with polytomous responses format. The test is based on a comparison of the observed and expected number of responses in strata defined by the test score. In this article, we make four contributions. We demonstrate that the performance of the generalized S-X[superscript 2]-test…
Descriptors: Goodness of Fit, Test Items, Statistical Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Demirkaya, Onur; Bezirhan, Ummugul; Zhang, Jinming – Journal of Educational and Behavioral Statistics, 2023
Examinees with item preknowledge tend to obtain inflated test scores that undermine test score validity. With the availability of process data collected in computer-based assessments, the research on detecting item preknowledge has progressed on using both item scores and response times. Item revisit patterns of examinees can also be utilized as…
Descriptors: Test Items, Prior Learning, Knowledge Level, Reaction Time
Shear, Benjamin R.; Reardon, Sean F. – Journal of Educational and Behavioral Statistics, 2021
This article describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in…
Descriptors: Statistical Analysis, Computation, Regression (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Nguyen, Trang Quynh; Stuart, Elizabeth A. – Journal of Educational and Behavioral Statistics, 2020
We address measurement error bias in propensity score (PS) analysis due to covariates that are latent variables. In the setting where latent covariate X is measured via multiple error-prone items W, PS analysis using several proxies for X--the W items themselves, a summary score (mean/sum of the items), or the conventional factor score (i.e.,…
Descriptors: Error of Measurement, Statistical Bias, Error Correction, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Erps, Ryan C.; Noguchi, Kimihiro – Journal of Educational and Behavioral Statistics, 2020
A new two-sample test for comparing variability measures is proposed. To make the test robust and powerful, a new modified structural zero removal method is applied to the Brown-Forsythe transformation. The t-test-based statistic allows results to be expressed as the ratio of mean absolute deviations from median. Extensive simulation study…
Descriptors: Statistical Analysis, Comparative Analysis, Robustness (Statistics), Sample Size
Oranje, Andreas; Kolstad, Andrew – Journal of Educational and Behavioral Statistics, 2019
The design and psychometric methodology of the National Assessment of Educational Progress (NAEP) is constantly evolving to meet the changing interests and demands stemming from a rapidly shifting educational landscape. NAEP has been built on strong research foundations that include conducting extensive evaluations and comparisons before new…
Descriptors: National Competency Tests, Psychometrics, Statistical Analysis, Computation
Feller, Avi; Mealli, Fabrizia; Miratrix, Luke – Journal of Educational and Behavioral Statistics, 2017
Researchers addressing posttreatment complications in randomized trials often turn to principal stratification to define relevant assumptions and quantities of interest. One approach for the subsequent estimation of causal effects in this framework is to use methods based on the "principal score," the conditional probability of belonging…
Descriptors: Scores, Probability, Computation, Program Evaluation
Reardon, Sean F.; Shear, Benjamin R.; Castellano, Katherine E.; Ho, Andrew D. – Journal of Educational and Behavioral Statistics, 2017
Test score distributions of schools or demographic groups are often summarized by frequencies of students scoring in a small number of ordered proficiency categories. We show that heteroskedastic ordered probit (HETOP) models can be used to estimate means and standard deviations of multiple groups' test score distributions from such data. Because…
Descriptors: Scores, Statistical Analysis, Models, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Magis, David; Tuerlinckx, Francis; De Boeck, Paul – Journal of Educational and Behavioral Statistics, 2015
This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the "LR lasso DIF method": logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts,…
Descriptors: Test Bias, Test Items, Regression (Statistics), Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Camilli, Gregory; Fox, Jean-Paul – Journal of Educational and Behavioral Statistics, 2015
An aggregation strategy is proposed to potentially address practical limitation related to computing resources for two-level multidimensional item response theory (MIRT) models with large data sets. The aggregate model is derived by integration of the normal ogive model, and an adaptation of the stochastic approximation expectation maximization…
Descriptors: Factor Analysis, Item Response Theory, Grade 4, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2014
A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…
Descriptors: Error of Measurement, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Briggs, Derek C.; Domingue, Ben – Journal of Educational and Behavioral Statistics, 2013
It is often assumed that a vertical scale is necessary when value-added models depend upon the gain scores of students across two or more points in time. This article examines the conditions under which the scale transformations associated with the vertical scaling process would be expected to have a significant impact on normative interpretations…
Descriptors: Evaluation Methods, Scaling, Scores, Achievement Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Karl, Andrew T.; Yang, Yan; Lohr, Sharon L. – Journal of Educational and Behavioral Statistics, 2013
Value-added models have been widely used to assess the contributions of individual teachers and schools to students' academic growth based on longitudinal student achievement outcomes. There is concern, however, that ignoring the presence of missing values, which are common in longitudinal studies, can bias teachers' value-added scores.…
Descriptors: Evaluation Methods, Teacher Effectiveness, Academic Achievement, Achievement Gains
Previous Page | Next Page »
Pages: 1  |  2