NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 31 to 45 of 202 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Pollock, David W.; Truong, Giovanna T.; Bonjour, Jessica L.; Frost, John A. – Journal of Chemical Education, 2018
Solubility is frequently introduced at the high school and introductory college levels through the symbolic domain using net ionic equations and solubility product constants. Students may become proficient with spectator ion cancellation and skilled with algorithmic mathematical applications of solubility without obtaining a deeper understanding…
Descriptors: Spectroscopy, Chemistry, Data Collection, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Kryjevskaia, Mila; Stetzer, MacKenzie R.; Lindsey, Beth A.; McInerny, Alistair; Heron, Paula R. L.; Boudreaux, Andrew – Physical Review Physics Education Research, 2020
[This paper is part of the Focused Collection on Curriculum Development: Theory into Design.] Research in physics education has contributed substantively to improvements in the learning and teaching of university physics by informing the development of research-based instructional materials for physics courses. Reports on the design of these…
Descriptors: Material Development, Science Instruction, Physics, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Singh, Satya Pal – European Journal of Physics Education, 2014
This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…
Descriptors: Physics, Scientific Principles, Magnets, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Gates, Joshua – Physics Education, 2014
Despite their physics instructors' arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented…
Descriptors: Magnets, Scientific Principles, Science Instruction, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Layton, William – Physics Teacher, 2014
Questions often arise as to how a device attached to a transformer can draw power from the electrical power grid since it seems that the primary and secondary are not connected to one another. However, a closer look at how the primary and secondary are linked together magnetically and a consideration of the role of Lenz's law in this linkage…
Descriptors: Science Instruction, Energy, Magnets, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Almudi, Jose Manuel; Ceberio, Mikel – International Journal of Science and Mathematics Education, 2015
This study explored the quality of arguments used by first-year engineering university students enrolled in a traditional physics course dealing with electromagnetic induction and related problem solving where they had to assess whether the electromagnetic induction phenomenon would occur. Their conclusions were analyzed for the relevance of the…
Descriptors: Persuasive Discourse, Engineering Education, College Freshmen, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Claycomb, James R.; Valentine, John H. – Physics Education, 2015
A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…
Descriptors: Science Instruction, Physics, Science Laboratories, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Wood, Deborah; Sebranek, John – Physics Teacher, 2013
In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831…
Descriptors: Magnets, Electronics, Science Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Reich, Gary – Physics Teacher, 2013
In introductory texts Ampere's law is generally introduced in the steady-current form ?B · dl = µ[subscript 0]I, and it is later extended to a more general form involving the so-called displacement current I[subscript d], ?B · dl = µ[subscript 0](I + I[subscript d]) · (1). Here the line integral is to be taken along a closed…
Descriptors: Scientific Principles, Energy, Magnets, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Prentice, A.; Fatuzzo, M.; Toepker, T. – Physics Teacher, 2015
By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.
Descriptors: Magnets, Motion, Physics, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Najiya Maryam, K. M. – Physics Education, 2014
If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…
Descriptors: Science Instruction, Science Experiments, Magnets, Motion
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Damli, Seher; Ünlü Yavas, Pervin – European Journal of Physics Education, 2015
The aim of this study is to introduce an activity on magnetic fields prepared in order to improve high school students' views on the nature of science. The activity was prepared according to explicit-reflective approach, which is one of the nature of science teaching methods. The nature of science elements intended to obtain with the activity are…
Descriptors: Scientific Principles, Science Instruction, Science Activities, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Michaelis, Max M. – Physics Education, 2014
After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…
Descriptors: Science Instruction, Lasers, Magnets, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Buschauer, Robert – Physics Teacher, 2014
In undergraduate E&M courses the magnetic field due to a finite length, current-carrying wire can be calculated using the Biot-Savart law. However, to the author's knowledge, no textbook presents the calculation of this field using the Ampere-Maxwell law: ?B [multiplied by] dl = µ[subscript 0] (I + e[subscript 0] dF/dt) [multiplied by] 1
Descriptors: Science Instruction, College Science, Undergraduate Study, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar – Journal of Chemical Education, 2014
A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…
Descriptors: Magnets, Demonstrations (Educational), Molecular Structure, Scientific Concepts
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  14