NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kallepalli, Samaya; Johnson, Lydia; Mattson, Bruce – Journal of Chemical Education, 2021
Thomas Graham discovered the law that bears his name while studying gas diffusion into air and other gases. He also found that the same relationship held with gas effusion, the movement of gases through a pinhole into a vacuum. Modern understanding of diffusion and effusion is based on kinetic-molecular theory, and it is generally accepted that…
Descriptors: Chemistry, Scientific Concepts, Scientific Principles, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert – Chemical Engineering Education, 2014
This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…
Descriptors: Science Experiments, College Science, Science Laboratories, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki – Journal of Chemical Education, 2014
An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…
Descriptors: Science Instruction, College Science, Undergraduate Study, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab – Journal of Chemical Education, 2012
An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…
Descriptors: Organic Chemistry, Mechanics (Physics), Laboratory Experiments, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Sattsangi, Prem D. – Journal of Chemical Education, 2011
A microscale laboratory for teaching chemical kinetics utilizing the iodine clock reaction is described. Plastic pipets, 3 mL volume, are used to store and deliver precise drops of reagents and the reaction is run in a 24 well plastic tray using a total 60 drops of reagents. With this procedure, students determine the rate of reaction and the…
Descriptors: Kinetics, Chemistry, Science Instruction, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Marzluff, Elaine M.; Crawford, Mary A.; Reynolds, Helen – Journal of Chemical Education, 2011
Substitution reactions, a central part of organic chemistry, provide a model system in physical chemistry to study reaction rates and mechanisms. Here, the use of inexpensive and readily available commercial conductivity probes coupled with computer data acquisition for the study of the temperature and solvent dependence of the solvolysis of…
Descriptors: Organic Chemistry, Science Instruction, Scientific Principles, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Mungan, Carl E. – Physics Education, 2012
A pair of objects on an inclined plane are connected together by a string. The upper object is then connected to a fixed post via a spring. The situation is first analysed as a classroom exercise in using free-body diagrams to solve Newton's second law for a system of objects upon which many different kinds of force are acting (string tension,…
Descriptors: Physics, Science Instruction, Science Laboratories, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Barlag, Rebecca; Nyasulu, Frazier – Journal of Chemical Education, 2010
A wash bottle water displacement scheme is used to determine the kinetics of the iodide-catalyzed H[subscript 2]O[subscript 2] decomposition reaction. The reagents (total volume 5.00 mL) are added to a test tube that is placed in a wash bottle containing water. The mass of the water displaced in [approximately]60 s is measured. The reaction is…
Descriptors: Science Activities, Kinetics, Science Laboratories, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Lopes, Fernando S.; Coelho, Lucia H. G.; Gutz, Ivano G. R.; Vitz, Ed – Journal of Chemical Education, 2010
Vast quantities, on the order of megatons, of pollutants are emitted monthly to the atmosphere both by natural and anthropogenic sources. The evaluation of rainwater composition has great importance in understanding the atmospheric chemical composition, as water drops scavenge particles and soluble atmospheric pollutants. Most students are aware…
Descriptors: Chemistry, Pollution, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Ault, Addison – Journal of Chemical Education, 2010
In this article I support and extend the ideas presented by J. Brent Friesen in his article "Saying What You Mean; Teaching Mechanisms in Organic Chemistry" ("JCE" November, 2008). I emphasize "telling the truth" about proton transfers. The truth is that in aqueous acid most reactions are subject to "specific" acid catalysis: the only kinetically…
Descriptors: Organic Chemistry, Science Instruction, Teaching Methods, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A. – Journal of Chemical Education, 2010
An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…
Descriptors: Kinetics, Organic Chemistry, Science Laboratories, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Sobel, Sabrina G.; Cohen, Skyler – Journal of Chemical Education, 2010
Surprisingly, spectator ions are responsible for unexpected kinetics in the biphasic copper(II)-aluminum displacement reaction, with the rate of reaction dependent on the identity of the otherwise ignored spectator ions. Application of a published kinetic analysis developed for a reaction between a rotating Al disk and a Cu(II) ion solution to the…
Descriptors: Chemistry, Science Instruction, Science Laboratories, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Lawlor, T. M. – Physics Teacher, 2008
The widely used PASCO laboratory equipment is an excellent way to introduce students to many topics in physics. In one case, PASCO's equipment may be too good! Various experiments exist for calculating the kinetic coefficient of friction by measuring the acceleration of a sliding object under some constant force. With ever more accurate equipment,…
Descriptors: Intervals, Kinetics, Physics, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph – Chemical Engineering Education, 2008
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
Descriptors: Organic Chemistry, Chemical Engineering, Science Instruction, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Keenan, Sheue L.; Peterson, Karl P.; Peterson, Kelly; Jacobson, Kyle – Journal of Chemical Education, 2008
Seven p-nitrophenyl benzoate esters (p-nitrophenyl benzoate, p-nitrophenyl m-anisate, p-nitrophenyl p-anisate, p-nitrophenyl m-chlorobenzoate, p-nitrophenyl p-chlorobenzoate, p-nitrophenyl m-toluate, p-nitrophenyl p-toluate) were synthesized and characterized by students in a second-semester organic laboratory course. In a subsequent laboratory…
Descriptors: Kinetics, Organic Chemistry, Science Laboratories, Data Analysis