NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers3
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ekkens, Tom – Physics Teacher, 2022
In many introductory physics classes, diffraction of light is introduced first, then more advanced diffraction topics such as x-ray diffraction, Bragg's law, and crystallography are covered. Since using x-rays raises safety concerns and atomic spacing in a crystal is not easy to change, microwaves with macroscopic crystals have been used to study…
Descriptors: Data Collection, Physics, Science Education, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Knutson, Cassandra M.; Hilker, Abby P.; Tolstyka, Zachary P.; Anderson, Constance B.; Wilbon, Perry A.; Mathers, Robert T.; Wentzel, Michael T.; Perkins, Angela L.; Wissinger, Jane E. – Journal of Chemical Education, 2019
A versatile experiment is described for the high school and college laboratory setting based on the synthesis of biobased polymers prepared from inexpensive, renewable, and nonhazardous chemicals. Combinations of readily available citric acid, glycerol, and tapioca root starch are used to prepare three polymeric materials with different observable…
Descriptors: Secondary School Science, College Science, Chemistry, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Perea Martins, J. E. M. – Physics Education, 2017
This work presents a simple analogue waterproof temperature probe design and its electronic interfacing with a computer to compose a data acquisition system for water temperature measurement. It also demonstrates the system usage through an experiment to verify the water heating period with an electric heater and another to verify the Newton's law…
Descriptors: Data Collection, Water, Heat, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Pollock, David W.; Truong, Giovanna T.; Bonjour, Jessica L.; Frost, John A. – Journal of Chemical Education, 2018
Solubility is frequently introduced at the high school and introductory college levels through the symbolic domain using net ionic equations and solubility product constants. Students may become proficient with spectator ion cancellation and skilled with algorithmic mathematical applications of solubility without obtaining a deeper understanding…
Descriptors: Spectroscopy, Chemistry, Data Collection, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Swanson, Lauren; Vernon, Heather; Bauer, Christina – Science Teacher, 2018
Understanding how scientific conclusions are drawn from data is central to learning about the nature of science. Many students struggle with aspects of reasoning from data, including identifying relationships among variables, interpreting graphs, coordinating theory and evidence, and not allowing personal beliefs to outweigh the data when forming…
Descriptors: Data Interpretation, Scientific Principles, Science Instruction, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Kroon, Cindy D. – Mathematics Teaching in the Middle School, 2016
Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…
Descriptors: Mathematics Instruction, Middle Schools, Secondary School Mathematics, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Levesque, Luc – Physics Education, 2014
Inaccurate measurements occur regularly in data acquisition as a result of improper sampling times. An understanding of proper sampling times when collecting data with an analogue-to-digital converter or video camera is crucial in order to avoid anomalies. A proper choice of sampling times should be based on the Nyquist sampling theorem. If the…
Descriptors: Video Technology, Motion, Physics, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gültepe, Nejla – Educational Sciences: Theory and Practice, 2016
Graphing subjects in chemistry has been used to provide alternatives to verbal and algorithmic descriptions of a subject by handing students another way of improving their manipulation of concepts. Teachers should therefore know the level of students' graphing skills. Studies have identified that students have difficulty making connections with…
Descriptors: High School Students, Graphs, Chemistry, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Vieyra, Rebecca E.; Vieyra, Chrystian – Physics Teacher, 2014
Mobile device accelerometers are a simple and easy way for students to collect accurate and detailed data on an amusement park ride. The resulting data can be graphed to assist in the creation of force diagrams to help students explain their physical sensations while on the ride. This type of activity can help students overcome some of the…
Descriptors: Handheld Devices, Technology Uses in Education, Recreational Activities, Parks
Peer reviewed Peer reviewed
Direct linkDirect link
Alaimo, Peter J.; Langenhan, Joseph M.; Suydam, Ian T. – Journal of Chemical Education, 2014
Many traditional organic chemistry lab courses do not adequately help students to develop the professional skills required for creative, independent work. The overarching goal of the new organic chemistry lab series at Seattle University is to teach undergraduates to think, perform, and behave more like professional scientists. The conversion of…
Descriptors: Undergraduate Students, Organic Chemistry, Alignment (Education), Science Process Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Lindquist, William; Forsberg, Britt – Science and Children, 2014
One author shares the unique opportunity to be immersed in the science of "sound at work" through participation in NOAA's (National Oceanic and Atmospheric Administration) Teacher at Sea Program. A third- through fifth-grade learning outcome within the Nature of Science section of the "Next Generation Science Standards"…
Descriptors: Acoustics, Instructional Innovation, Science Course Improvement Projects, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Gillette, Brandon; Hamilton, Cheri – Science Scope, 2011
When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…
Descriptors: Science Instruction, Scientific Concepts, Learning Activities, Color
Peer reviewed Peer reviewed
Direct linkDirect link
Huff, Kenneth; Lange, Catherine – Science Scope, 2010
In the atmosphere or on the ground, snow provides students with unique opportunities to discover winter weather patterns. Traditionally, when students study weather, it is limited to the collection of data one would see on a weather report. However, the interdisciplinary Students Synthesizing Snow data in Natural Objective Ways (SSSNOW) project…
Descriptors: Weather, Physics, Meteorology, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Smothers, Sinikka M.; Goldston, M. Jenice – Science Education, 2010
This qualitative multiple case study explored the conceptual frameworks of two congenitally blind male adolescents on the nature of matter. We examined participants' responses on four tactile investigations focused on concepts and processes associated with matter changes. The matter changes investigated were dissolution, chemical change,…
Descriptors: Journal Writing, Investigations, Focus Groups, Adolescents
Peer reviewed Peer reviewed
Direct linkDirect link
Curry, Kristen; Moore, Jerilou; Sumrall, William J. – Science Scope, 2007
When students investigate science, they model, imitate, and perform science much as scientists do. Learning science in this way is best, according to the locus of control research. Based on this research, students need to develop an internal belief that they can control science outcomes and become a part of science through their own hands-on…
Descriptors: Locus of Control, Investigations, Student Attitudes, Scientific Principles
Previous Page | Next Page »
Pages: 1  |  2