NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Self Directed Learning…1
What Works Clearinghouse Rating
Showing 1 to 15 of 47 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wye, Steven – Physics Education, 2023
During the COVID-19 pandemic and subsequent lockdown, both schools and universities faced significant challenges in moving teaching from an in-situ setting to a remote one, this included laboratory experiments. This paper presents an experiment developed to use a phone's in built pressure sensor, common to most smart phones. By using this sensor…
Descriptors: COVID-19, Pandemics, School Closing, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Setiaji, Bayu; Santoso, Purwoko Haryadi – International Review of Research in Open and Distributed Learning, 2023
The COVID-19 pandemic has constituted a sudden educational transformation around the world. It has disrupted instructors, including physics educators, forcing them to adjust to remote teaching. The hands-on laboratory, one of the components of physics instruction, has also had to rapidly go online in all branches of this science, including nuclear…
Descriptors: COVID-19, Pandemics, Educational Technology, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Supacha Wirojsaengthong; Wanlapa Aeungmaitrepirom; Fuangfa Unob; Saowarux Fuangswasdi; Puttaruksa Varanusupakul; Kanphitcha Mueangdech; Thirachat Treetos; Pumidech Puthongkham – Journal of Chemical Education, 2023
Hands-on experiences in analytical chemistry laboratories are essential to improve students' technical skills on handling analytical glassware and instruments, but the coronavirus pandemic in 2020-2021 disrupted such learning activities. Thus, alternative remote activities are required to supplement practical skills. In this work, a new portable…
Descriptors: Science Laboratories, Chemistry, Science Instruction, COVID-19
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmed, A. Ait Ben; Touache, A.; ElHakimi, A.; Chamat, A. – Physics Education, 2022
The dynamic study of pendulum systems is considered an indispensable subject for physics and mechanics students in colleges and high schools. In this paper, a detailed methodology is given concerning the use of smartphones in pedagogical practical work for studying the dynamics of pendulum systems. Whereas, three aspects have been discussed…
Descriptors: Science Instruction, Mechanics (Physics), College Science, Secondary School Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Borrull, Anna; Valls, Cristina – Journal of Turkish Science Education, 2021
Practical work as observation and experimentation are vital parts of science education. One way to accomplish this is by applying inquiry-based learning in laboratory activities. Inquiry enhances the development of scientific skills as well as the learning of the scientific concepts. In the present article, a laboratory activity was developed to…
Descriptors: Telecommunications, Handheld Devices, Science Instruction, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Ambruso, Kelly; Riley, Kathryn R. – Journal of Chemical Education, 2022
In this communication, we describe five at-home laboratory experiments and demonstrations that complement a semester-long analytical chemistry curriculum. The experiments were successfully carried out by remote undergraduate students enrolled in a hybrid analytical chemistry course during the COVID-19 pandemic. Students used their personal…
Descriptors: COVID-19, Pandemics, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Zhdanov, Arsenii; Pyay, Anna – Physics Teacher, 2022
Mobile phones are a widely used platform for educational apps, mobile health, and a variety of chemical tests. Here, we are working on a mobile phone-based physics lab (mPhysics) that uses a mobile phone's capabilities to run simple physics experiments and demonstrations. While a mobile phone can be used to analyze magnetic and optical properties…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Shiyan; Tatar, Cansu; Huang, Xudong; Sung, Shannon H.; Xie, Charles – Journal of Educational Computing Research, 2022
Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school…
Descriptors: Computer Simulation, Science Instruction, Science Laboratories, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Seyhan, Hatice Güngör – Education Quarterly Reviews, 2022
The aim of the present research is to determine the current situation in the readiness levels of 11th grade high school students for self-directed learning, to examine the effectiveness of laboratory activities developed with with mobile technology integrated into the 5E learning model in various chemistry subjects on students' self-directed…
Descriptors: Educational Technology, Technology Uses in Education, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nagihan Kadioglu; Özge Özyalçin Oskay – Pedagogical Research, 2025
The aim of this study was to determine the effect of Mobile AR (MAR) supported Flipped Learning Model (FLM) applications on the academic achievement of first year undergraduate students in General Chemistry Laboratory course and to investigate the students' views on MAR supported FLM. In the study carried out with a quasi-experimental design with…
Descriptors: Flipped Classroom, Chemistry, Science Laboratories, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Gallitto, Aurelio Agliolo; Battaglia, Onofrio Rosario; Fazio, Claudio – Physics Education, 2021
We describe an educational activity that can be done by using smartphones to collect data in physics experiments aimed to measure the oscillating period of a spring-mass system and the elastic constant of the helicoidal spring by the dynamic method. Results for the oscillating period and for the elastic constant of the spring agree very well with…
Descriptors: Science Instruction, Physics, Measurement Techniques, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Gössling, Alexander; Becker, Sebastian; Kuhn, Jochen – Physics Teacher, 2021
Supersonic free-fall jumps are excellent examples of kinematics in the context of drag. They have attracted a lot of media, public, and scientific interest. In 2012, Felix Baumgartner jumped from a height of approximately 38.969 km. During his flight he reached a top speed of 373 m/s, becoming the first human to travel faster than the speed of…
Descriptors: Science Instruction, Science Experiments, Physics, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Ürek, Handan; Özdemir, Erdogan; Coramik, Mustafa – Physics Education, 2021
The target of this study is to determine the minimum angle of deviation of a prism which is one of the optical experiments. Thus, the aim is to state the refractive index of a prism. In this context, the Tracker program, which might also be utilized in terms of distance education purposes, was preferred. The videos of the experiments were recorded…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Kaps, Andreas; Stallmach, Frank – Physics Education, 2022
Smartphone-based experimental exercises were incorporated as part of the homework problems in an introductory mechanics course at a university. A quasi-experimental field study with two cohorts design was performed to measure the impact of such exercises on motivation, interest and conceptual understanding. The empirical results on learning…
Descriptors: Telecommunications, Handheld Devices, Homework, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Katharine Hubbard; Marlena Birycka; Maisie-Elizabeth Britton; Joseph Coates; Isla Delphine Coxon; Chloe Hannah Jackson; Casper Leigh Nicholas; Tyler M. Priestley; J. J. Robins; Paula R. Ryczko; Talia Salisbury; Megan Shand; George Snodin; Beth Worsley – Journal of Biological Education, 2024
Providing hands-on practical education without access to laboratories during the COVID-19 pandemic has required creativity and innovation. In this paper, co-authored by academic staff and students, we describe an at-home mobile phone-based 'spectrophotometer' experiment used in an introductory undergraduate biology course. Using colour picker…
Descriptors: Hands on Science, Science Laboratories, Distance Education, Telecommunications
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4