Publication Date
| In 2026 | 0 |
| Since 2025 | 46 |
| Since 2022 (last 5 years) | 277 |
| Since 2017 (last 10 years) | 812 |
| Since 2007 (last 20 years) | 1690 |
Descriptor
| Problem Solving | 2929 |
| Science Instruction | 2929 |
| Teaching Methods | 1129 |
| Physics | 766 |
| Science Education | 734 |
| College Science | 657 |
| Foreign Countries | 598 |
| Scientific Concepts | 594 |
| Chemistry | 568 |
| Higher Education | 478 |
| Secondary School Science | 460 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 461 |
| Teachers | 458 |
| Researchers | 115 |
| Students | 42 |
| Administrators | 22 |
| Policymakers | 10 |
| Parents | 1 |
Location
| Turkey | 63 |
| Indonesia | 62 |
| Australia | 43 |
| China | 34 |
| Taiwan | 25 |
| California | 22 |
| Canada | 22 |
| Germany | 22 |
| Israel | 20 |
| United Kingdom | 16 |
| South Africa | 15 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 8 |
| Education Consolidation… | 1 |
| Elementary and Secondary… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 1 |
| Meets WWC Standards with or without Reservations | 1 |
Adams, Dennis; Hamm, Mary – Rowman & Littlefield Education, 2011
"Shaping the Future with Math, Science, and Technology" examines how ingenuity, creativity, and teamwork skills are part of an intellectual toolbox associated with math, science, and technology. The book provides new ideas, proven processes, practical tools, and examples useful to educators who want to encourage students to solve problems and…
Descriptors: Educational Change, Problem Solving, Innovation, STEM Education
LaBanca, Frank; Ritchie, Krista C. – Science Teacher, 2011
Problem solving is a valuable skill in the science classroom. Students often use a variety of inquiry strategies to identify problems and their implications; develop action plans; locate relevant sources, information, and data; and formulate solutions. Problem solving is a logical, analytical, and sometimes creative process. The less tangible,…
Descriptors: Creativity, Learning Strategies, Problem Solving, Science Fairs
Hertting, Scott – Physics Teacher, 2011
In preparing to teach the advanced physics course at my high school, I found it useful to work through the end of chapter problems in the book used by the advanced class. A problem on motion in one dimension involved a stunt woman in free fall from a tree limb onto a horse running beneath her. The problem presents a connected learning opportunity…
Descriptors: Physics, Motion, Scientific Concepts, Models
Wendel, Paul – Physics Teacher, 2011
Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area. Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams, and over recent years a rich variety of…
Descriptors: Conferences (Gatherings), Student Attitudes, Physics, Scientific Concepts
Stieff, Mike; Hegarty, Mary; Deslongchamps, Ghislain – Cognition and Instruction, 2011
Increasingly, multi-representational educational technologies are being deployed in science classrooms to support science learning and the development of representational competence. Several studies have indicated that students experience significant challenges working with these multi-representational displays and prefer to use only one…
Descriptors: Educational Technology, Visual Aids, Science Instruction, Organic Chemistry
Yoder, Garett; Cook, Jerry – Journal of STEM Education: Innovations and Research, 2014
The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…
Descriptors: Physics, College Science, Science Laboratories, Laboratory Experiments
Olteanu, Constanta; Olteanu, Lucian – International Education Studies, 2012
The purpose of this paper is to present the mechanism for effective communication when the mathematical objects of learning are equations and functions. The presentation is based on data collected while the same object of learning is presented in two classes, and it includes two teachers and 45 students. Among other things, the data consists of…
Descriptors: Foreign Countries, Secondary Education, Secondary School Science, Natural Sciences
Gok, Tolga – Hacettepe University Journal of Education, 2012
The change in students' problem solving ability in upper-level course through the application of a technological interactive environment--Tablet PC running InkSurvey--was investigated in present study. Tablet PC/InkSurvey interactive technology allowing the instructor to receive real-time formative assessment as the class works through the problem…
Descriptors: Physics, Problem Solving, Computer Uses in Education, Handheld Devices
Krange, Ingeborg; Arnseth, Hans Christian – Cultural Studies of Science Education, 2012
The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource…
Descriptors: Science Education, Scientific Concepts, Virtual Classrooms, Secondary School Science
Maurer, Marta K.; Bukowski, Michael R.; Menachery, Mary D.; Zatorsky, Adam R. – Journal of Chemical Education, 2010
We have developed a two-week guided-inquiry laboratory in which first-semester general chemistry students investigate a suspected arson using gas chromatography--mass spectrometry and paper chromatography. In the process of evaluating evidence from the crime scene, students develop and test hypotheses and learn the fundamentals of chromatography,…
Descriptors: Investigations, Crime, Chemistry, Science Instruction
Davis-McGibony, C. Michele – Journal of Chemical Education, 2010
The jigsaw technique has been used in a fourth-year biochemistry course to increase problem-solving abilities of the students. The jigsaw method is a cooperative-learning technique that involves a group structure. Students start with a "home" group. That group is responsible for learning an assigned portion of a task. Then the instructor separates…
Descriptors: Cooperative Learning, Biochemistry, Problem Solving, Science Instruction
Orgill, MaryKay; Crippen, Kent – Journal of College Science Teaching, 2010
Diagrams and figures play a central role in science and science education. Research has indicated that, when presented and used properly in a classroom setting, these external representations can contribute to students' understanding of scientific concepts; however, it is apparent that students do not always use, understand, interpret, or value…
Descriptors: College Science, Chemistry, Scientific Concepts, Science Instruction
Wallace, Colin S.; Chasteen, Stephanie V. – Physical Review Special Topics - Physics Education Research, 2010
This study presents and interprets some conceptual difficulties junior-level physics students experience with Ampere's law. We present both quantitative data, based on students' written responses to conceptual questions, and qualitative data, based on interviews of students solving Ampere's law problems. We find that some students struggle to…
Descriptors: Physics, Electronics, Magnets, Advanced Students
Mostowski, Jan – European Journal of Physics, 2010
In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these…
Descriptors: Motion, Science Instruction, Problem Solving, Equations (Mathematics)
Cotton, Samuel E.; Calkins, Celeste M. – Tech Directions, 2011
Problem-solving activities let students use knowledge gained in various areas of their academic education. They bring together skills and knowledge from such areas as science, math, art, and English by simulating activities and projects students will encounter later in career and life experiences. A very important feature of most problem-solving…
Descriptors: Academic Education, Hands on Science, Problem Solving, Student Projects

Direct link
Peer reviewed
