NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 31 to 45 of 66 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stern, Florian; Kampourakis, Kostas – Studies in Science Education, 2017
Research in genetics and genomics is advancing at a fast pace, and thus keeping up with the most recent findings and conclusions can be very challenging. At the same time these recent findings and conclusions have made necessary a reconceptualization of genes and heredity, both in science and in science education, beyond the mostly gene-centred…
Descriptors: Genetics, Literacy, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Delgado, Cesar; Lucero, Margaret M. – Journal of Research in Science Teaching, 2015
Graphing is a fundamental part of the scientific process. Scales are key but little-studied components of graphs. Adopting a resources-based framework of cognitive structure, we identify the potential intuitive resources that six undergraduates of diverse majors and years at a public US research university activated when constructing scales, and…
Descriptors: Graphs, Scaling, Undergraduate Students, Majors (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Balta, Nuri; Eryilmaz, Ali – International Journal of Science and Mathematics Education, 2017
One way to fascinate, engage, arouse curiosity, motivate, and stimulate intellectual development in learning scientific concepts is to use counterintuitive questions. These questions make students aware of the inadequacies of their own thinking by exposing them to situations whose outcomes are inconsistent with what they would expect. In this…
Descriptors: Intuition, Learner Engagement, Intellectual Development, Measures (Individuals)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Masin, Sergio Cesare; Crivellaro, Francesco; Varotto, Diego – Psicologica: International Journal of Methodology and Experimental Psychology, 2014
The research field of intuitive physics focuses on discrepancies between theoretical and intuitive physical knowledge. Consideration of these discrepancies can help in the teaching of elementary physics. However, evidence shows that theoretical and intuitive physical knowledge may also be congruent. Physics teaching could further benefit from…
Descriptors: Physics, Scientific Principles, Science Instruction, Intuition
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Buteler, Laura Maria; Coleoni, Enrique Andrés – Electronic Journal of Science Education, 2014
Solving many quantitative problems does not necessarily lead to an improved Physics understanding. However, physicists, who have learned physics largely through quantitative problems solving, often have a refined physical intuition. Assuming that the refinement of physical intuitions occurs, to a great extent, during problem solving, the question…
Descriptors: Correlation, Physics, Problem Solving, Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Coley, John D.; Tanner, Kimberly – CBE - Life Sciences Education, 2015
Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…
Descriptors: Intuition, Misconceptions, Biology, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Greenstein, George – Astronomy Education Review, 2013
I discuss a pedagogical strategy in which we ask students to write about science. Such writing is to be done regularly and often, in class and out of class, in the format of brief "letters to a friend" and longer essays. The goal of this technique is not to teach students how to write; it is to use their writing to help them learn the science.…
Descriptors: Teaching Methods, Content Area Writing, Astronomy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Coghlan, David – Action Learning: Research and Practice, 2012
In Revans' learning formula, L = P + Q, Q represents "questioning insight", by which Revans means that insight comes out of the process of questioning programmed knowledge (P) in the light of experience. We typically focus on the content of an insight rather than on the act of insight. Drawing primarily on the work of Bernard Lonergan this paper…
Descriptors: Experiential Learning, Intuition, Scientific Methodology, Cognitive Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Syed, M. Qasim – Journal of College Teaching & Learning, 2015
Students in first-year physics courses generally focus on hunting for suitable equations and formulas when tackling a variety of physical situations and physics problems. There is a need for a framework that can guide them to disciplinary ways of thinking and help them begin to think like physicists. To serve this end, in this study, a framework…
Descriptors: Physics, Science Instruction, Engineering Education, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Cullipher, S.; Sevian, H.; Talanquer, V. – Chemistry Education Research and Practice, 2015
The ability to evaluate options and make informed decisions about problems in relevant contexts is a core competency in science education that requires the use of both domain-general and discipline-specific knowledge and reasoning strategies. In this study we investigated the implicit assumptions and modes of reasoning applied by individuals with…
Descriptors: Chemistry, Costs, Cost Effectiveness, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Adams, Deanne M.; Pilegard, Celeste; Mayer, Richard E. – Journal of Educational Computing Research, 2016
Learning physics often requires overcoming common misconceptions based on naïve interpretations of observations in the everyday world. One proposed way to help learners build appropriate physics intuitions is to expose them to computer simulations in which motion is based on Newtonian principles. In addition, playing video games that require…
Descriptors: Video Games, Teaching Methods, Technology Uses in Education, Simulated Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Parnafes, Orit – Cognition and Instruction, 2012
This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…
Descriptors: Concept Formation, Astronomy, Intuition, Grade 5
Peer reviewed Peer reviewed
Direct linkDirect link
Jeppsson, Fredrik; Haglund, Jesper; Amin, Tamer G.; Stromdahl, Helge – Journal of the Learning Sciences, 2013
A growing body of research has examined the experiential grounding of scientific thought and the role of experiential intuitive knowledge in science learning. Meanwhile, research in cognitive linguistics has identified many "conceptual metaphors" (CMs), metaphorical mappings between abstract concepts and experiential source domains,…
Descriptors: Abstract Reasoning, Chemistry, Figurative Language, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen – Educational Technology & Society, 2013
Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…
Descriptors: Cognitive Style, Student Needs, Educational Games, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Babai, Reuven; Eidelman, Rachel Rosanne; Stavy, Ruth – International Journal of Science and Mathematics Education, 2012
Many students encounter difficulties in science and mathematics. Earlier research suggested that although intuitions are often needed to gain new ideas and concepts and to solve problems in science and mathematics, some of students' difficulties could stem from the interference of intuitive reasoning. The literature suggests that overcoming…
Descriptors: Reaction Time, Inhibition, Science Education, Mathematics Education
Pages: 1  |  2  |  3  |  4  |  5