NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 71 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ari Krakowski; Eric Greenwald; Natalie Roman; Christina Morales; Suzanna Loper – Journal of Research in Science Teaching, 2024
The role of computation in science is ever-expanding and is enabling scientists to investigate complex phenomena in more powerful ways and tackle previously intractable problems. The growing role of computation has prompted calls to integrate computational thinking (CT) into science instruction in order to more authentically mirror contemporary…
Descriptors: Computation, Thinking Skills, Coding, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Beth A. Covitt; Kristin L. Gunckel; Alan Berkowitz; William W. Woessner; John Moore – Journal of Science Education and Technology, 2024
Computational models are employed to study and respond to pressing environmental issues such as groundwater contamination. This use of computational models, which often involves algorithms and uncertainty that are hidden to the public, has implications for environmental science literacy. This study applies a design-based research approach to…
Descriptors: Learning Experience, Computation, Thinking Skills, Models
Jonathan Robert Bowers – ProQuest LLC, 2024
To make sense of our interconnected and algorithm driven world, students increasingly need proficiency with computational thinking (CT), systems thinking (ST), and computational modeling. One aspect of computational modeling that can support students with CT, ST, and modeling is testing and debugging. Testing and debugging enables students to…
Descriptors: Troubleshooting, Thinking Skills, Computation, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, David W.; Cheng, Yihong – Computer Science Education, 2022
Background and Context: Computational thinking and practices (CT|P) are key competencies for learners in science and engineering. For studies with young adolescents as participants, manifested research philosophies are sometimes inconsistent with societal pluralisms. Objective: Based on research literature from 2016 to early 2019 for CT|P in…
Descriptors: Adolescents, Science Instruction, Engineering Education, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Amy Voss Farris; Gözde McLaughlin – Journal of Computer Assisted Learning, 2024
Background: Science teachers' understanding of the roles of computing practices in science frame how they enact scientific computational practices in their teaching and how their students perceive the relationship between computational practices and scientific endeavours. Objectives: This critical, integrative review synthesizes teacher learning…
Descriptors: Science Teachers, Computation, Multiple Literacies, Elementary Secondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Peters-Burton, Erin; Rich, Peter Jacob; Kitsantas, Anastasia; Stehle, Stephanie M.; Laclede, Laura – Journal of Research in Science Teaching, 2023
In the United States, the Next Generation Science Standards advocate for the integration of computational thinking (CT) as a science and engineering practice. Additionally, there is agreement among some educational researchers that increasing opportunities for engaging in computational thinking can lend authenticity to classroom activities. This…
Descriptors: High School Teachers, Biology, Science Instruction, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Kale, Ugur; Kooken, Ashley; Yuan, Jiangmei; Roy, Abhik – Contemporary Issues in Technology and Teacher Education (CITE Journal), 2023
Despite the increasing number of coding initiatives to promote computational thinking (CT), their main focus on in-service teachers in large school districts of the big cities far from exemplifies opportunities for preservice teachers (PSTs) to learn how to promote it in rural elementary school settings. As a preliminary step, this research…
Descriptors: Science Instruction, Teaching Methods, Computation, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
G. Puttick; M. Cassidy; E. Tucker-Raymond; G. M. Troiano; C. Harteveld – Journal of Research in Science Teaching, 2024
Much research attention has been focused on learning through game playing. However, very little has been focused on student learning through game making, especially in science. Moreover, none of the studies on learning through making games has presented an account of how students engage in the process of game design in real time. The present study…
Descriptors: Design, Computer Games, Peer Teaching, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Marissa Levy; Amanda Peel; Lexie Zhao; Nicholas LaGrassa; Michael S. Horn; Uri Wilensky – Journal of Research in Science Teaching, 2025
Increasing access to computational ideas and practices is one important reason to integrate computational thinking (CT) in science classrooms. While integrating CT into science classrooms broadens exposure to computing, it may not be enough to ensure equitable participation in the science classroom. Equitable participation is crucial because…
Descriptors: Secondary School Teachers, Science Teachers, Teacher Attitudes, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jennifer Houchins; Danielle Boulden; James Lester; Bradford Mott; Kristy Elizabeth Boyer; Eric Wiebe – International Journal of Designs for Learning, 2021
This design case chronicles the efforts of an interdisciplinary team of researchers as they collaborated with middle grades science teachers and students to build and refine an epidemic disease curriculum module. The initial five-day design was delivered in five science classrooms at three nearby schools where researcher classroom observations and…
Descriptors: Teaching Methods, Middle School Students, Computation, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Aydan Aytekin; Mustafa Sami Topçu – Education and Information Technologies, 2024
Circulatory system is a challenging subject for middle school students to learn and understand conceptual relationships. To address these challenges, this study developed plugged (computational thinking activities using computer) and unplugged (computational thinking activities without using computer) teaching modules that integrated computational…
Descriptors: Computation, Thinking Skills, Human Body, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Peel, Amanda; Sadler, Troy D.; Friedrichsen, Patricia – American Biology Teacher, 2021
Computational thinking (CT) is a thought process composed of computer science ideas and skills that can be applied to solve problems and better understand the world around us. With the increase in technology and computing, STEM disciplines are becoming interwoven with computing. In order to better prepare students for STEM careers, computational…
Descriptors: Computation, Thinking Skills, Scaffolding (Teaching Technique), Evolution
Peer reviewed Peer reviewed
Direct linkDirect link
Ogegbo, Ayodele Abosede; Ramnarain, Umesh – African Journal of Research in Mathematics, Science and Technology Education, 2022
Although there is a lot of interest in the development of computational thinking (CT) and the benefits it could have for every student, integrating it into science classrooms may be more difficult than traditional teaching. This can be very challenging for South African science teachers. Thus, there is an increasing need to prepare teachers and…
Descriptors: Thinking Skills, Computation, Science Instruction, Teacher Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Rachmatullah, Arif; Wiebe, Eric N. – Journal of Science Teacher Education, 2023
The inclusion of computational thinking (CT) into science curricula has advocated implementing a computationally rich science learning environment where students learn science via building models in a computer programming platform. Such an approach may influence teachers' self-efficacy for teaching science which may also be associated with their…
Descriptors: Middle School Teachers, Self Efficacy, Science Instruction, Educational Environment
Herwinarso; Elisabeth Pratidhina; Pramono Adam; Heru Kuswanto; Anggi Datiatur Rahmat – Journal of Education and e-Learning Research, 2023
Computational thinking (CT) skills are essential with the rapid advancement of technology. Developing CT attitudes in students is also required for improving CT skills. On the other hand, science process skills are also emphasized in high school physics classes. This study aims to design and implement collaborative modeling-based learning for high…
Descriptors: Computation, Thinking Skills, High School Students, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5