Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 40 |
| Since 2017 (last 10 years) | 150 |
| Since 2007 (last 20 years) | 362 |
Descriptor
| Motion | 449 |
| Science Instruction | 449 |
| Science Experiments | 397 |
| Physics | 358 |
| Scientific Concepts | 206 |
| College Science | 136 |
| Mechanics (Physics) | 113 |
| Scientific Principles | 113 |
| Secondary School Science | 94 |
| Teaching Methods | 83 |
| Energy | 80 |
| More ▼ | |
Source
Author
Publication Type
Education Level
| Higher Education | 131 |
| Secondary Education | 68 |
| High Schools | 66 |
| Postsecondary Education | 52 |
| Middle Schools | 11 |
| Elementary Education | 7 |
| Junior High Schools | 6 |
| Grade 9 | 5 |
| Elementary Secondary Education | 3 |
| Grade 4 | 2 |
| Grade 11 | 1 |
| More ▼ | |
Audience
| Teachers | 77 |
| Practitioners | 38 |
| Students | 7 |
| Researchers | 1 |
Location
| Germany | 4 |
| Thailand | 3 |
| Turkey | 3 |
| United Kingdom | 3 |
| Australia | 2 |
| Greece | 2 |
| Hungary | 2 |
| Italy | 2 |
| New York | 2 |
| Romania | 2 |
| Sweden | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Palacios Gómez, Jesús; Villagómez, Roque André Eleazar Arroyo – Physics Teacher, 2023
Here, a relatively simple laboratory experiment of a physical pendulum, suitable for students of science and engineering in the first courses of university physics, is presented to illustrate its dynamic behavior and to determine its inertia moment. To this end, a long wooden rod of length L = 99.8 cm and cross-section radius R = 1.73 cm was used…
Descriptors: Physics, Science Instruction, Science Laboratories, Motion
Cross, Rod – Physics Education, 2022
A 2.7 m long stringless pendulum was set up to measure the coefficient of rolling friction of various balls, at higher rolling speeds than usually observed with a short stringless pendulum. The arrangement is easy to set up and makes an impressive classroom demonstration as well as an interesting laboratory experiment.
Descriptors: Physics, Science Instruction, Motion, Scientific Concepts
Minkin, Leonid; Sikes, Daniel – Physics Teacher, 2022
The magnetic field of Earth, B[subscript e], is an intriguing topic in the introductory physics curriculum that engages students' curiosity and inspires numerous speculations about the nature of this phenomenon. There are several methods for measuring Earth's magnetic field. Probably, the most widespread and visual method of measuring the field in…
Descriptors: Physics, Science Instruction, Measurement Techniques, Magnets
Ha, Hye Jin; Jang, Taehun; Sohn, Sang Ho – Physics Education, 2022
In this study, we derived several formulas for the currents induced in a circular loop by a magnet connected to a spring-based simple harmonic oscillation system. In addition, we conducted an experiment for measuring the induced currents and compared the results with the theoretical prediction. It was confirmed that the prediction from the derived…
Descriptors: Science Instruction, Magnets, Motion, Laboratory Equipment
Fletcher, Kurtis A.; Lallier, Nicole M.; Masman, Jack M. – Physics Teacher, 2023
Inspired by a commercially produced scattering experiment that was popular beginning in the 1960s, we have developed a Nerf-projectile-based educational activity to demonstrate the basics of particle scattering experiments.
Descriptors: Science Experiments, Science Instruction, Physics, Motion
Coelho, Ricardo Lopes – Physics Education, 2022
The pendulum was an important scientific instrument in the 17th century. It became a typical textbook problem in the 18th century. After the introduction of vectors in physics in the 1890s, the pendulum problem started to be progressively solved in the manner we know nowadays from introductory mechanics courses. Starting from "F = ma"…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Ng, Chiu-king – Physics Teacher, 2022
In this paper, we utilize the readily known theory of the ideal transformer to furnish a self-contained qualitative explanation on the AC-powered Thomson jumping ring (TJR) experiment.
Descriptors: Science Experiments, Science Instruction, Physics, Scientific Concepts
Ahmed, A. Ait Ben; Touache, A.; ElHakimi, A.; Chamat, A. – Physics Education, 2022
The dynamic study of pendulum systems is considered an indispensable subject for physics and mechanics students in colleges and high schools. In this paper, a detailed methodology is given concerning the use of smartphones in pedagogical practical work for studying the dynamics of pendulum systems. Whereas, three aspects have been discussed…
Descriptors: Science Instruction, Mechanics (Physics), College Science, Secondary School Science
Lozovenko, O.; Minaiev, Yu; Lutai, R. – Physics Education, 2022
The purpose of this publication is to present a novel approach to the demonstration of the Dzhanibekov effect. The main idea of our version is to use a lightweight spinning top of a spherical external form but distinct principal moments of inertia floating in the upward flow of air. As a result, the Dzhanibekov effect can be easily demonstrated…
Descriptors: Science Instruction, Teaching Methods, Physics, Scientific Principles
Çoban, Atakan; Erol, Mustafa – Physics Education, 2022
The present study reports an Arduino-based STEM education material that resolves the kinematics of a moving object, specifically focusing on two dimensional motion of the object. Throughout the work, a sample application that can be prepared in a classroom where students are active and including the acquisitions of Technology, Engineering, Physics…
Descriptors: STEM Education, Motion, Science Instruction, Measurement Equipment
Lazos, Panagiotis; Nezis, Anastasios; Kyriazopoulos, Nikolaos – Physics Teacher, 2022
The interference pattern between two harmonic oscillations with slightly different frequencies are called beats. The beats, as a combined motion, have two different periods, one approximately equal to the period of the original oscillations, and another that is significantly longer and is related to the variable amplitude of the motion. The main…
Descriptors: Science Instruction, Physics, Motion, Science Experiments
Cross, Rod – Physics Education, 2022
A simple experiment is described to compare the descent time between two vertically separated points when an object slides down tracks of varying shape. A surprising result is that the descent time is shortest when it follows a circular track rather than a cycloidal track. Cycloidal tracks are usually predicted to result in the shortest descent…
Descriptors: Science Experiments, Scientific Concepts, Motion, Mechanics (Physics)
Maslova, K.; de Jesus, V. L. B.; Sasaki, D. G. G. – Physics Education, 2020
In general, undergraduate experimental physics laboratories do not usually have experiments designed to address rolling friction and to measure the value of the rolling friction coefficient. This work explores an experiment, which has the potential to arouse students' curiosity about rolling friction by addressing a counterintuitive aspect of the…
Descriptors: Physics, Science Instruction, Science Experiments, Scientific Concepts
Cross, Rod – Physics Education, 2021
If a smooth ball is dropped vertically without spin on a smooth horizontal surface then one might expect the ball to bounce vertically without spin. If it does not then the centre of mass of the ball does not coincide with its geometric centre. An experiment is described where a billiard ball and a superball are deliberately biassed by adding a…
Descriptors: Science Instruction, Scientific Principles, Physics, Motion
Cross, Rod – Physics Education, 2022
A loop-the-loop experiment is described to show how sliding friction affects motion of the ball. Conservation of energy can be used to explain the basic physics, but significant energy loss is observed in practice and expands the usefulness of this apparatus as a teaching tool.
Descriptors: Science Instruction, Science Experiments, Scientific Concepts, Concept Formation

Peer reviewed
Direct link
