Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 5 |
| Since 2017 (last 10 years) | 13 |
| Since 2007 (last 20 years) | 29 |
Descriptor
| Models | 38 |
| Science Instruction | 38 |
| Kinetics | 36 |
| College Science | 20 |
| Scientific Concepts | 17 |
| Teaching Methods | 16 |
| Chemistry | 13 |
| Physics | 11 |
| Molecular Structure | 9 |
| Motion | 9 |
| Energy | 8 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 37 |
| Reports - Descriptive | 22 |
| Reports - Research | 13 |
| Guides - Classroom - Teacher | 2 |
| Reports - Evaluative | 1 |
Education Level
| Higher Education | 20 |
| Postsecondary Education | 12 |
| High Schools | 5 |
| Secondary Education | 5 |
| Junior High Schools | 2 |
| Middle Schools | 2 |
| Elementary Education | 1 |
| Elementary Secondary Education | 1 |
| Grade 10 | 1 |
Audience
| Teachers | 3 |
| Practitioners | 1 |
| Researchers | 1 |
| Students | 1 |
Location
| Massachusetts | 2 |
| Brazil | 1 |
| Hong Kong | 1 |
| Illinois | 1 |
| Portugal | 1 |
| Washington | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
McBane, George C. – Journal of Chemical Education, 2021
The basic SIR (susceptible-infectious-removed) model of epidemiology is presented in chemical kinetic terms with a simple two-reaction mechanism. The conditions for the development of epidemics, the course of a simple closed epidemic, and the bases of several mitigation strategies are described in terms of the underlying first- and second-order…
Descriptors: Chemistry, Kinetics, Epidemiology, Models
Hua, Amy K.; Lakey, Pascale S. J.; Shiraiwa, Manabu – Journal of Chemical Education, 2022
This paper presents MATLAB user interfaces for two multiphase kinetic models: the kinetic double-layer model of aerosol surface chemistry and gas--particle interactions (K2-SURF) and the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). Each interface has simple and user-friendly features that allow undergraduate and…
Descriptors: Chemistry, Science Instruction, Computer Interfaces, Kinetics
Tobin, R. G.; Lacy, Sara J.; Crissman, Sally – Physical Review Physics Education Research, 2023
Kinetic energy is usually the entry point for the study of energy in physics and is often perceived as unproblematic. We present evidence, however, that some learners who seem to have accepted the concept, from elementary school students to college physics majors and in-service teachers, nevertheless do not consistently attribute kinetic energy to…
Descriptors: Physics, Science Instruction, Scientific Concepts, Concept Formation
Kaste, Joshua A. M.; Green, Antwan; Shachar-Hill, Yair – Biochemistry and Molecular Biology Education, 2023
The modeling of rates of biochemical reactions--fluxes--in metabolic networks is widely used for both basic biological research and biotechnological applications. A number of different modeling methods have been developed to estimate and predict fluxes, including kinetic and constraint-based (Metabolic Flux Analysis and flux balance analysis)…
Descriptors: Science Instruction, Teaching Methods, Prediction, Metabolism
Teaching Undergraduate Physical Chemistry Lab with Kinetic Analysis of COVID-19 in the United States
Dylan K. Smith; Kristin Lauro; Dymond Kelly; Joel Fish; Emma Lintelman; David McEwen; Corrin Smith; Max Stecz; Tharushi D. Ambagaspitiya; Jixin Chen – Journal of Chemical Education, 2022
A physical chemistry lab for undergraduate students described in this report is about applying kinetic models to analyze the spread of COVID-19 in the United States and obtain the reproduction numbers. The susceptible-infectious-recovery (SIR) model and the SIR-vaccinated (SIRV) model are explained to the students and are used to analyze the…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Students
Di Vincenzo, Antonella; Floriano, Michele A. – Journal of Chemical Education, 2020
An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based…
Descriptors: High School Students, Undergraduate Students, Molecular Structure, Chemistry
Beck, Jordan P.; Muniz, Marc N.; Crickmore, Cassidy; Sizemore, Logan – Chemistry Education Research and Practice, 2020
Models that are used to predict and explain phenomena related to molecular vibration and rotation are ubiquitous in physical chemistry, and are of importance in many related fields. Yet, little work has been done to characterize student use and application of these models. We describe the results of a multi-year, multi-institutional qualitative…
Descriptors: Chemistry, Models, Science Instruction, Prediction
Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua – Physics Education, 2018
A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…
Descriptors: Kinetics, Science Instruction, Models, Physics
García-Herrero, Victor; Sillero, Antonio – Biochemistry and Molecular Biology Education, 2015
The main purpose of this study was to present a simplified view of model metabolic cycles. Although the models have been elaborated with the "Mathematica" Program, and using a system of differential equations, the main conclusions were presented in a rather intuitive way, easily understandable by students of general courses of…
Descriptors: Models, Metabolism, Biochemistry, Science Instruction
Students' Visualisation of Chemical Reactions--Insights into the Particle Model and the Atomic Model
Cheng, Maurice M. W. – Chemistry Education Research and Practice, 2018
This paper reports on an interview study of 18 Grade 10-12 students' model-based reasoning of a chemical reaction: the reaction of magnesium and oxygen at the submicro level. It has been proposed that chemical reactions can be conceptualised using two models: (i) the "particle model," in which a reaction is regarded as the simple…
Descriptors: Visualization, Chemistry, Science Instruction, Grade 10
Lozano-Parada, Jaime H.; Burnham, Helen; Martinez, Fiderman Machuca – Journal of Chemical Education, 2018
A classical nonlinear system, the "Brusselator", was used to illustrate the modeling and simulation of oscillating chemical systems using stability analysis techniques with modern software tools such as Comsol Multiphysics, Matlab, and Excel. A systematic approach is proposed in order to establish a regime of parametric conditions that…
Descriptors: Science Instruction, Chemistry, College Science, Educational Technology
Jeffery, Kathleen A.; Pelaez, Nancy; Anderson, Trevor R. – CBE - Life Sciences Education, 2018
To keep biochemistry instruction current and relevant, it is crucial to expose students to cutting-edge scientific research and how experts reason about processes governed by thermodynamics and kinetics such as protein folding and dynamics. This study focuses on how experts explain their research into this topic with the intention of informing…
Descriptors: Biochemistry, Science Instruction, Scientific Research, Thermodynamics
Campbell, Todd; Neilson, Drew – Science Teacher, 2016
In this article Campbell and Neilson discuss several design strategies developed or adopted that were found particularly helpful when sequencing a unit that focused on learning about motion and acceleration. Students were expected to predict, observe, and explain why a ball traveled down one ramp faster than the other. Before engaging students,…
Descriptors: Models, Motion, Kinetics, Scientific Principles
Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J. – Journal of Chemical Education, 2017
The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…
Descriptors: Science Instruction, Science Laboratories, Science Experiments, Laboratory Experiments

Peer reviewed
Direct link
