NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Peabody Picture Vocabulary…1
What Works Clearinghouse Rating
Showing 1 to 15 of 43 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alexei Goun; Ksenija D. Glusac – Journal of Chemical Education, 2023
Ultrafast laser spectroscopy is a valuable and increasingly accessible technique for studies of rapid chemical reactions. Critical to ultrafast spectroscopy is the concept of mode locking, a technique that enables a fixed phase relationship between laser modes, resulting in laser pulses with very short duration (in the fs or ps range). Despite the…
Descriptors: Lasers, Spectroscopy, Science Instruction, Chemistry
Aakash Kumar – ProQuest LLC, 2022
Many efforts to reform science educational standards and structure have placed an emphasis on directing learners to communicate about concepts using external representations (ERs). Techniques to develop competencies with ERs often ask learners to develop understanding outside of a physical context while concurrently making connections back to the…
Descriptors: Magnets, Scientific Concepts, Science Instruction, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Arribas, Enrique; Escobar, Isabel; Ramirez-Vazquez, Raquel; del Pilar Suarez Rodriguez, Carmen; Gonzalez-Rubio, Jesus; Belendez, Augusto – Physics Teacher, 2020
We believe that a natural focus of the physics education research community is on understanding and improving students' learning in our physics courses. Due to the increase in technology, we can bring laboratory experiments closer to our students. It is necessary to update our laboratories technologically to get closer to the world in which our…
Descriptors: Physics, Laboratory Experiments, Educational Technology, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Pirbhai, M. – Physics Education, 2020
Measuring the "e/m" ratio is a classic experiment in the physics curriculum. We show that smartphones can reliably measure the magnetic field strengths involved. Moreover, phone cameras and the image-processing software Tracker can make determining the charge-to-mass ratio of the electron more accurate.
Descriptors: Science Instruction, Science Experiments, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Hootman, Stacy A.; Pickett, Cory – Physics Teacher, 2021
To help engage non-physics majors in a General Physics II (Electricity & Magnetism) course at the University of Indianapolis, students used their smartphones to detect magnetic fields on campus in a semester-long data collection project. This paper discusses details about the design of the project, previous studies that utilize smartphones for…
Descriptors: Science Instruction, Magnets, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Jean Nepomuscene Twahirwa; Celestin Ntivuguruzwa – Cogent Education, 2024
This study investigates the effects of smart classrooms, comprehensive assessment management information systems, and remediation teaching techniques on teachers 'and student's conceptual understanding of physics. The participants included 67 students from Senior One, Senior Two, and Senior Three, purposively sampled from G.S Mushongi in Kirehe…
Descriptors: Physics, Science Instruction, Educational Technology, Learning Management Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Shakur, Asif; Valliant, Benjamin – Physics Teacher, 2020
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's smart cart, in combination with student-owned smartphones and free apps, has opened up a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper we demonstrate the simplicity,…
Descriptors: Science Instruction, Physics, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Taspika, Melda; Nuraeni, Lely; Suhendra, Dadang; Iskandar, Ferry – Physics Education, 2019
This paper reports on the measurement of a magnetic field due to the coil carrying current by using the magnetic sensor in a smartphone as an alternate to the relatively expensive magnetic sensor probe. The location of the magnetic sensor in the smartphone was known by mapping the value of the magnetic field due to the permanent magnetic bar so…
Descriptors: Physics, Telecommunications, Handheld Devices, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Yan, Peizheng; Xia, Haojie; Li, Jianquan; Wang, Yonghong; Wei, Yongqing; Ji, Feng; Shu, Shuangbao – Physics Teacher, 2019
Light polarization, which is the direction of electromagnetic field oscillation, provides information that is highly different from that of spectral and intensity images and thus can enhance various fields of optical metrology. Polarization imaging can be also used by combining polarization and imaging, thereby providing polarization and spatial…
Descriptors: Telecommunications, Handheld Devices, Light, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Soares, A. A.; Reis, T. O. – Physics Education, 2019
Here we present an inexpensive proposal to experimentally study Faraday's law of induction. The experiment uses low-cost materials, a computer with a sound card and a smartphone, both running free software. A value proportional to the induced electromotive force is measured with the computer's sound card and the data related to the magnetic field…
Descriptors: Science Instruction, Scientific Principles, Magnets, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Abdusselam, Mustafa Serkan; Karal, Hasan – Technology, Pedagogy and Education, 2020
The purpose of this study is to investigate the effect of MagAR, an instructional material for teaching magnetism using augmented reality and sensing technology, on students' academic achievement and learning process, and to identify students' views about augmented reality. An embedded mixed-method approach was employed in this study. The study's…
Descriptors: Magnets, Computer Simulation, High School Students, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Robinson, Ian – Physics Education, 2018
Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…
Descriptors: Science Instruction, Geophysics, Measurement Equipment, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Pili, Unofre; Violanda, Renante – Physics Teacher, 2018
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…
Descriptors: Science Instruction, Physics, Magnets, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Odden, Tor Ole. B.; Russ, Rosemary S. – Physical Review Physics Education Research, 2018
Although physics teachers often seek to help their students make sense of physics concepts, our field has yet to thoroughly explore how and why students engage in sensemaking. In this study we use the epistemic games framework to propose a model for students' sensemaking processes. Our analysis of a series of clinical interviews with introductory…
Descriptors: Physics, Science Instruction, Introductory Courses, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Kodejška, C.; Lepil, O.; Sedlácková, H. – Physics Education, 2018
This work deals with the experimental demonstration of coupled oscillators using simple tools in the form of mechanical coupled pendulums, magnetically coupled elastic strings or electromagnetic oscillators. For the evaluation of results the data logger Lab Quest Vernier and video analysis in the Tracker program were used. In the first part of…
Descriptors: Secondary School Science, High School Students, Mechanics (Physics), Motion
Previous Page | Next Page »
Pages: 1  |  2  |  3