NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Christof Keebaugh; Emily Marshman; Chandralekha Singh – Physical Review Physics Education Research, 2025
We discuss how research on student difficulties was used as a guide to develop, validate, and evaluate a Quantum Interactive Learning Tutorial (QuILT) to help students learn how to determine the completely symmetric bosonic or completely antisymmetric fermionic wave function and be able to compare and contrast them from the case when the particles…
Descriptors: Physics, Science Instruction, Teaching Methods, Quantum Mechanics
Peer reviewed Peer reviewed
Direct linkDirect link
de Sousa, Gabriel L. A.; Cardoso, George C. – Physics Education, 2018
We use analogies to provide introductory laboratory students intuition into measurement uncertainties. Using a battery-resistor circuit we discuss uncertainty concepts and derive expressions for uncertainty of the mean and sums of uncertainties. Finally, we draw attention to the fact that the interpretation of standard deviation as uncertainty…
Descriptors: Physics, Science Instruction, Statistical Analysis, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Bao, Lei; Koenig, Kathleen; Xiao, Yang; Fritchman, Joseph; Zhou, Shaona; Chen, Cheng – Physical Review Physics Education Research, 2022
Abilities in scientific thinking and reasoning have been emphasized as core areas of initiatives, such as the Next Generation Science Standards or the College Board Standards for College Success in Science, which focus on the skills the future will demand of today's students. Although there is rich literature on studies of how these abilities…
Descriptors: Physics, Science Instruction, Teaching Methods, Thinking Skills
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Buteler, Laura Maria; Coleoni, Enrique Andrés – Electronic Journal of Science Education, 2014
Solving many quantitative problems does not necessarily lead to an improved Physics understanding. However, physicists, who have learned physics largely through quantitative problems solving, often have a refined physical intuition. Assuming that the refinement of physical intuitions occurs, to a great extent, during problem solving, the question…
Descriptors: Correlation, Physics, Problem Solving, Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Coley, John D.; Tanner, Kimberly – CBE - Life Sciences Education, 2015
Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…
Descriptors: Intuition, Misconceptions, Biology, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Adams, Deanne M.; Pilegard, Celeste; Mayer, Richard E. – Journal of Educational Computing Research, 2016
Learning physics often requires overcoming common misconceptions based on naïve interpretations of observations in the everyday world. One proposed way to help learners build appropriate physics intuitions is to expose them to computer simulations in which motion is based on Newtonian principles. In addition, playing video games that require…
Descriptors: Video Games, Teaching Methods, Technology Uses in Education, Simulated Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Babai, Reuven; Eidelman, Rachel Rosanne; Stavy, Ruth – International Journal of Science and Mathematics Education, 2012
Many students encounter difficulties in science and mathematics. Earlier research suggested that although intuitions are often needed to gain new ideas and concepts and to solve problems in science and mathematics, some of students' difficulties could stem from the interference of intuitive reasoning. The literature suggests that overcoming…
Descriptors: Reaction Time, Inhibition, Science Education, Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Babai, Reuven; Brecher, Tali; Stavy, Ruth; Tirosh, Dina – International Journal of Science and Mathematics Education, 2006
One theoretical framework which addresses students' conceptions and reasoning processes in mathematics and science education is the intuitive rules theory. According to this theory, students' reasoning is affected by intuitive rules when they solve a wide variety of conceptually non-related mathematical and scientific tasks that share some common…
Descriptors: Reaction Time, Probability, Mathematics Instruction, Thinking Skills