NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Su, King-Dow – Journal of Baltic Science Education, 2021
This research focuses on students' higher-order cognitive skill (HOCS)-oriented learning to construct effective hierarchical thinking abilities in their chemical particulate nature of matter. For in-depth knowledge and profound understanding, this research deals with students' positive developments towards HOCS with a special guidance to Marzanos'…
Descriptors: Thinking Skills, Chemistry, Science Instruction, Cognitive Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Halawa, Suarman; Hsu, Ying-Shao; Zhang, Wen-Xin – Asia-Pacific Education Researcher, 2023
The purpose of this study is to analyze the learning goals, nature of science, inquiry skills, understanding of inquiry, and inquiry types in the senior high school physics textbooks in Indonesia. We selected the textbooks based on three criteria: (1) approved by the Ministry of Education and Culture in Indonesia, (2) widely used in senior high…
Descriptors: Physics, Science Instruction, Textbooks, Content Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gjerde, Vegard; Holst, Bodil; Kolstø, Stein Dankert – Physical Review Physics Education Research, 2021
Introductory mechanics is an obligatory course for many disciplines outside of physics and the failure rate is often high. Even the students who pass the course often fail to achieve the main learning goal: The conceptual knowledge required for modeling situations with physics principles. In many cases, this is due to inefficient learning…
Descriptors: Learning Strategies, Physics, Science Instruction, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Balta, Nuri; Japashov, Nursultan; Abdulbakioglu, Mustafa; Oliveira, Alandeom W. – Physics Education, 2020
Student cognition in response to intuitive and counterintuitive stimuli in the school science curriculum is not well understood. To address this issue, this study examines high school students' cognitive responses to three counterintuitive physics problems. Our analysis reveals that student success in arriving at counter-intuitive physical…
Descriptors: High School Students, Science Instruction, Secondary School Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Schultheis, Elizabeth H.; Kjelvik, Melissa K. – American Biology Teacher, 2020
Authentic, "messy data" contain variability that comes from many sources, such as natural variation in nature, chance occurrences during research, and human error. It is this messiness that both deters potential users of authentic data and gives data the power to create unique learning opportunities that reveal the nature of science…
Descriptors: Data Analysis, Scientific Research, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Alan, Ümran; Erdogan, Serap – Early Childhood Education Journal, 2018
Although the importance of nature of science (NOS) instruction for learners as young as kindergartners is emphasised in a great number of documents and studies, very little research has been conducted in early childhood contexts. Thus, researchers are still not able to see a comprehensive picture of young children's understandings of NOS. The…
Descriptors: Foreign Countries, Scientific Principles, Kindergarten, Developmental Stages
Peer reviewed Peer reviewed
Direct linkDirect link
Caspari, I.; Kranz, D.; Graulich, N. – Chemistry Education Research and Practice, 2018
Research in organic chemistry education has revealed that students often rely on rote memorization when learning mechanisms. Not much is known about student productive resources for causal reasoning. To investigate incipient stages of student causal reasoning about single mechanistic steps of organic reactions, we developed a theoretical framework…
Descriptors: Organic Chemistry, Science Instruction, Logical Thinking, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Matta, Corrado – Open Review of Educational Research, 2014
In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…
Descriptors: Science Instruction, Intention, Inferences, Sociology
Jackson, Luke M. – ProQuest LLC, 2017
This mixed method study was aimed at examining the influence of dual processing (Type 1 and Type 2 thinking) on the development of high school students' nature of science (NOS) views. Type 1 thinking is intuitive, experiential, and heuristic. Type 2 thinking is rational, analytical, and explicit. Three research questions were asked: (1) Do the…
Descriptors: Mixed Methods Research, High School Students, Scientific Principles, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Mansour, Nasser; Wegerif, Rupert; Skinner, Nigel; Postlethwaite, Keith; Hetherington, Lindsay – Research in Science Education, 2016
The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and "dialogue…
Descriptors: Foreign Countries, Science Teachers, Cooperative Learning, Preservice Teachers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Syed, M. Qasim – Journal of College Teaching & Learning, 2015
Students in first-year physics courses generally focus on hunting for suitable equations and formulas when tackling a variety of physical situations and physics problems. There is a need for a framework that can guide them to disciplinary ways of thinking and help them begin to think like physicists. To serve this end, in this study, a framework…
Descriptors: Physics, Science Instruction, Engineering Education, Energy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
De Sá Teixeira, Nuno Alexandre; Oliveira, Armando Mónica; Silva, Ana Duarte – Psicologica: International Journal of Methodology and Experimental Psychology, 2014
Newton's cradle, a device consisting of a chain of steel balls suspended in alignment, has been used extensively in physics teaching to demonstrate the principles of conservation of momentum and kinetic energy in elastic collisions. The apparent simplicity of the device allows one to test commonly hold views regarding the intuitive understanding…
Descriptors: Science Instruction, Physics, Scientific Principles, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Shih-Yin; Singh, Chandralekha – Physical Review Special Topics - Physics Education Research, 2013
In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation…
Descriptors: Physics, Science Instruction, Problem Solving, Scaffolding (Teaching Technique)
Bramschreiber, Terry L. – ProQuest LLC, 2013
Even 150 years after Charles Darwin published "On the Origin of Species," public school teachers still find themselves dealing with student resistance to learning about biological evolution. Some teachers deal with this pressure by undermining, deemphasizing, or even omitting the topic in their science curriculum. Others face the…
Descriptors: Science Education, Science Instruction, Evolution, Science Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Kampourakis, Kostas; McComas, William F. – Science & Education, 2010
Recently, the nature of science (NOS) has become recognized as an important element within the K-12 science curriculum. Despite differences in the ultimate lists of recommended aspects, a consensus is emerging on what specific NOS elements should be the focus of science instruction and inform textbook writers and curriculum developers. In this…
Descriptors: Creativity, Elementary Secondary Education, Social Influences, Cognitive Processes
Previous Page | Next Page »
Pages: 1  |  2