NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 61 to 75 of 589 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Saranin, Vladimir; Keldyshev, Denis; Ivanov, Yuriy – Physics Education, 2019
The article presents the results of an experimental study on the motion of a neodymium magnet on an inclined duralumin plate. During experiments, the time of motion was measured, and the steady-state velocity of the magnet motion was determined. To measure the time, a robotic set was used, which made it possible to measure the time of the motion…
Descriptors: Motion, Magnets, Robotics, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Ha, Hye Jin; Jang, Taehun; Sohn, Sang Ho – Physics Education, 2022
In this study, we derived several formulas for the currents induced in a circular loop by a magnet connected to a spring-based simple harmonic oscillation system. In addition, we conducted an experiment for measuring the induced currents and compared the results with the theoretical prediction. It was confirmed that the prediction from the derived…
Descriptors: Science Instruction, Magnets, Motion, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Salinas, Isabel; Monteiro, Martín; Martí, Arturo C.; Monsoriu, Juan A. – Physics Teacher, 2020
In this article, the dynamics of a traditional toy, the yo-yo, are investigated theoretically and experimentally using smartphone sensors. In particular, using the gyroscope the angular velocity is measured. The experimental results are complemented thanks to a digital video analysis. The concordance between theoretical and experimental results is…
Descriptors: Toys, Handheld Devices, Telecommunications, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Canassa, T. A.; Freitas, W. P. S.; Ferreira, J. V. B.; Goncalves, A. M. B. – Physics Education, 2020
We propose an experimental analogy to verify Kepler's second law using a spherical pendulum. We made a movie of a closed elliptical orbit of the pendulum and extracted the data position using the Tracker software. Analyzing the data, we measured the areas that the position vector sweeps showing the validity of Kepler's second law.
Descriptors: Scientific Principles, Motion, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Priyanto, Aan; Yusmantoro; Aji, Mahardika Prasetya – Physics Teacher, 2020
When we travel in a train moving at a certain velocity, we observe the stationary objects outside are moving backwards. These stationary objects seem to move due to a relative velocity. Consider that the stationary object outside the train is a man standing on the stationary floor watching a woman moving on a train. The woman on a train will see…
Descriptors: Telecommunications, Handheld Devices, Motion, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2021
A solid ball placed on a rotating turntable is known to roll slowly around a circular path, at a speed 3.5 times slower than the turnable itself. If the ball is located in a straight track across a diameter of the turntable, then it accelerates rapidly to the edge. Both effects were filmed in slow motion using a video camera and a cake decoration…
Descriptors: Motion, Physics, Science Instruction, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Phayphung, Wissarut; Rakkapao, Suttida; Prasitpong, Singha – Physics Education, 2022
The article introduces a low-cost Arduino sensor into the Young's modulus determination laboratory for physics university students. A stainless steel ruler is used as a cantilever beam. Its free end attached a mass is slightly bent and released to make it oscillate as a simple harmonic motion. The Arduino sensor detects the moving mass's frequency…
Descriptors: Laboratory Equipment, Science Laboratories, Physics, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Lindén, Johan; Anttu, Nicklas – Physics Education, 2022
The falling rod paradox, i.e. the fact that the tip of an almost horizontal rod falls with an acceleration 'higher than g', when the other end is hinged or supported, is a popular physics demonstration. It can be visualized by placing e.g. a coin on the tip of the rod and fixing a cup next to the coin. When the rod is released the free-falling…
Descriptors: Science Instruction, Mechanics (Physics), Scientific Concepts, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Ha, Sangwoo; Kim, Minchul – Science & Education, 2020
Experiment is understood as a core activity in science education as well as science in general. Despite many efforts to improve science education in the laboratory, a cookbook style of verification experiments often dominate school science. In this study, we conducted an open laboratory activity that provided students with an opportunity to think…
Descriptors: Science Experiments, Physics, Motion, Academically Gifted
Peer reviewed Peer reviewed
Direct linkDirect link
Risk Mora, David Yamil; Durango Idarraga, Sebastian; Cardenas Montoya, Paulo Cesar – Physics Education, 2020
Collisions are a key topic in physics and engineering education. An experiment with multiple body one-dimensional collisions is presented, aiming to measure relevant physical quantities by tracking the motion of the system of particles during the collision. Relations between different physical quantities can be explored in the experiment, such as…
Descriptors: Video Technology, Physics, Science Instruction, Photography
Peer reviewed Peer reviewed
Direct linkDirect link
Rinaldi, R. Gustav; Fauzi, Ahmad – Physics Education, 2020
The recent works of oscillators are mainly focused on underdamped oscillation. Therefore, the writer proposes an experimental apparatus to demonstrate all types of damped harmonic oscillation. The apparatus utilizes an Arduino for data acquisition and an Excel spreadsheet for data analysis. By using this apparatus, the type of damped harmonic…
Descriptors: Science Instruction, Science Experiments, Measurement Techniques, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Pili, Unofre B. – Physics Education, 2020
Using Tracker, a popular video-based physics modeling tool, the position-time data of magnetically damped oscillations of a simple pendulum are acquired. Eddy currents are generated on an aluminum sheet as the magnetic pendulum bob passes over it and the induced magnetic field opposes that of the magnetic bob. This causes the damping. A…
Descriptors: Physics, Scientific Concepts, Motion, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Ramos, L. M.; Reis, C. R. N.; Calheiro, L. B.; Goncalves, A. M. B. – Physics Education, 2021
Using a joystick module, we followed the movement of a chaotic magnetic pendulum. The pendulum bar was attached to a joystick that served as a pivot point and biaxial angular motion sensor. Using an Arduino board, we could follow the position as a function of time along both the "x" and "y"-axis and draw a graph showing the…
Descriptors: Physics, Science Instruction, Computer Software, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Rovšek, Barbara; Žigon, Sašo – Physics Teacher, 2021
This paper addresses a popular topic in science teaching and competitions for primary and secondary school students. Experiments with colliding coins are relatively easy to perform and therefore popular in science lessons. We used the idea in the science competition we organized for pupils aged 6 to 13 years.7 The science competition is based on a…
Descriptors: Physics, Science Instruction, Teaching Methods, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Tél, Tamas – Physics Education, 2021
Chaotic phenomena are not part of standard curricula, although this subject offers several interesting aspects which can help students better understand basic features of science. A central observation is that even simple physical systems, if chaotic, are unpredictable, just like the weather. We present the principles applied when developing a…
Descriptors: Physics, Science Instruction, Teaching Methods, Motion
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  40