NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Herron, Michael C.; Quinn, Kevin M. – Sociological Methods & Research, 2016
Case studies appear prominently in political science, sociology, and other social science fields. A scholar employing a case study research design in an effort to estimate causal effects must confront the question, how should cases be selected for analysis? This question is important because the results derived from a case study research program…
Descriptors: Case Studies, Selection, Sampling, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Harvill, Eleanor L.; Peck, Laura R.; Bell, Stephen H. – American Journal of Evaluation, 2013
Using exogenous characteristics to identify endogenous subgroups, the approach discussed in this method note creates symmetric subsets within treatment and control groups, allowing the analysis to take advantage of an experimental design. In order to maintain treatment--control symmetry, however, prior work has posited that it is necessary to use…
Descriptors: Experimental Groups, Control Groups, Research Design, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J. – Psychological Review, 2010
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
Descriptors: Models, Cognitive Processes, Psychology, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Jee-Seon; Bolt, Daniel M. – Educational Measurement: Issues and Practice, 2007
The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain…
Descriptors: Placement, Monte Carlo Methods, Markov Processes, Measurement