Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 41 |
| Since 2017 (last 10 years) | 88 |
| Since 2007 (last 20 years) | 193 |
Descriptor
Source
Author
| Fan, Xitao | 14 |
| Kromrey, Jeffrey D. | 8 |
| Shieh, Gwowen | 6 |
| Zhang, Zhiyong | 6 |
| Barcikowski, Robert S. | 5 |
| Barnette, J. Jackson | 5 |
| Finch, W. Holmes | 5 |
| Hancock, Gregory R. | 5 |
| McLean, James E. | 5 |
| Yuan, Ke-Hai | 5 |
| Ahn, Soyeon | 4 |
| More ▼ | |
Publication Type
Education Level
| High Schools | 3 |
| Higher Education | 3 |
| Secondary Education | 3 |
| Elementary Education | 2 |
| Grade 4 | 2 |
| Elementary Secondary Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
Audience
| Researchers | 12 |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
| National Assessment of… | 2 |
| Program for International… | 2 |
| Early Childhood Longitudinal… | 1 |
| National Longitudinal Study… | 1 |
| Trends in International… | 1 |
| Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Joseph M. Kush; Elise T. Pas; Rashelle J. Musci; Catherine P. Bradshaw – Grantee Submission, 2022
Propensity score matching and weighting methods are often used in observational effectiveness studies to reduce imbalance between treated and untreated groups on a set of potential confounders. However, much of the prior methodological literature on matching and weighting has yet to examine performance for scenarios with a majority of treated…
Descriptors: Probability, Observation, Weighted Scores, Monte Carlo Methods
Jang, Yoona; Hong, Sehee – Educational and Psychological Measurement, 2023
The purpose of this study was to evaluate the degree of classification quality in the basic latent class model when covariates are either included or are not included in the model. To accomplish this task, Monte Carlo simulations were conducted in which the results of models with and without a covariate were compared. Based on these simulations,…
Descriptors: Classification, Models, Prediction, Sample Size
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
Novak, Josip; Rebernjak, Blaž – Measurement: Interdisciplinary Research and Perspectives, 2023
A Monte Carlo simulation study was conducted to examine the performance of [alpha], [lambda]2, [lambda][subscript 4], [lambda][subscript 2], [omega][subscript T], GLB[subscript MRFA], and GLB[subscript Algebraic] coefficients. Population reliability, distribution shape, sample size, test length, and number of response categories were varied…
Descriptors: Monte Carlo Methods, Evaluation Methods, Reliability, Simulation
Okan Bulut; Guher Gorgun; Hacer Karamese – Journal of Educational Measurement, 2025
The use of multistage adaptive testing (MST) has gradually increased in large-scale testing programs as MST achieves a balanced compromise between linear test design and item-level adaptive testing. MST works on the premise that each examinee gives their best effort when attempting the items, and their responses truly reflect what they know or can…
Descriptors: Response Style (Tests), Testing Problems, Testing Accommodations, Measurement
Shaojie Wang; Won-Chan Lee; Minqiang Zhang; Lixin Yuan – Applied Measurement in Education, 2024
To reduce the impact of parameter estimation errors on IRT linking results, recent work introduced two information-weighted characteristic curve methods for dichotomous items. These two methods showed outstanding performance in both simulation and pseudo-form pseudo-group analysis. The current study expands upon the concept of information…
Descriptors: Item Response Theory, Test Format, Test Length, Error of Measurement
Olivia Szendey – Society for Research on Educational Effectiveness, 2024
Background & Context: Intersectionality theory posits that each individual's unique intersection of identity is integral to understanding their lived experience. Intersectionality theory also understands that social positions interact with oppression to influence an individual's lived experience (Bowleg, 2012; Collins, 2007; Crenshaw, 1989).…
Descriptors: Educational Research, Educational Researchers, Intersectionality, Self Concept
Fatih Orçan – International Journal of Assessment Tools in Education, 2025
Factor analysis is a statistical method to explore the relationships among observed variables and identify latent structures. It is crucial in scale development and validity analysis. Key factors affecting the accuracy of factor analysis results include the type of data, sample size, and the number of response categories. While some studies…
Descriptors: Factor Analysis, Factor Structure, Item Response Theory, Sample Size
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Power in multilevel models remains an area of interest to both methodologists and substantive researchers. In two-level designs, the total sample is a function of both the number of level-2 (e.g., schools) clusters and the average number of level-1 (e.g., classrooms) units per cluster. Traditional multilevel power calculations rely on either the…
Descriptors: Multivariate Analysis, Randomized Controlled Trials, Monte Carlo Methods, Sample Size
Mangino, Anthony A.; Bolin, Jocelyn H.; Finch, W. Holmes – Educational and Psychological Measurement, 2023
This study seeks to compare fixed and mixed effects models for the purposes of predictive classification in the presence of multilevel data. The first part of the study utilizes a Monte Carlo simulation to compare fixed and mixed effects logistic regression and random forests. An applied examination of the prediction of student retention in the…
Descriptors: Prediction, Classification, Monte Carlo Methods, Foreign Countries
Basman, Munevver – International Journal of Assessment Tools in Education, 2023
To ensure the validity of the tests is to check that all items have similar results across different groups of individuals. However, differential item functioning (DIF) occurs when the results of individuals with equal ability levels from different groups differ from each other on the same test item. Based on Item Response Theory and Classic Test…
Descriptors: Test Bias, Test Items, Test Validity, Item Response Theory
Aidoo, Eric Nimako; Appiah, Simon K.; Boateng, Alexander – Journal of Experimental Education, 2021
This study investigated the small sample biasness of the ordered logit model parameters under multicollinearity using Monte Carlo simulation. The results showed that the level of biasness associated with the ordered logit model parameters consistently decreases for an increasing sample size while the distribution of the parameters becomes less…
Descriptors: Statistical Bias, Monte Carlo Methods, Simulation, Sample Size
Rank-Normalization, Folding, and Localization: An Improved [R-Hat] for Assessing Convergence of MCMC
Aki Vehtari; Andrew Gelman; Daniel Simpson; Bob Carpenter; Paul-Christian Burkner – Grantee Submission, 2021
Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic [R-hat] of Gelman and Rubin (1992) has serious flaws. Traditional [R-hat] will fail to correctly diagnose convergence failures…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Efficiency
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Xu Qin – Grantee Submission, 2023
When designing a study for causal mediation analysis, it is crucial to conduct a power analysis to determine the sample size required to detect the causal mediation effects with sufficient power. However, the development of power analysis methods for causal mediation analysis has lagged far behind. To fill the knowledge gap, I proposed a…
Descriptors: Sample Size, Statistical Analysis, Causal Models, Mediation Theory

Peer reviewed
Direct link
