Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 41 |
| Since 2017 (last 10 years) | 88 |
| Since 2007 (last 20 years) | 193 |
Descriptor
Source
Author
| Fan, Xitao | 14 |
| Kromrey, Jeffrey D. | 8 |
| Shieh, Gwowen | 6 |
| Zhang, Zhiyong | 6 |
| Barcikowski, Robert S. | 5 |
| Barnette, J. Jackson | 5 |
| Finch, W. Holmes | 5 |
| Hancock, Gregory R. | 5 |
| McLean, James E. | 5 |
| Yuan, Ke-Hai | 5 |
| Ahn, Soyeon | 4 |
| More ▼ | |
Publication Type
Education Level
| High Schools | 3 |
| Higher Education | 3 |
| Secondary Education | 3 |
| Elementary Education | 2 |
| Grade 4 | 2 |
| Elementary Secondary Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
Audience
| Researchers | 12 |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
| National Assessment of… | 2 |
| Program for International… | 2 |
| Early Childhood Longitudinal… | 1 |
| National Longitudinal Study… | 1 |
| Trends in International… | 1 |
| Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Althouse, Linda Akel; Ware, William B.; Ferron, John M. – 1998
The assumption of normality underlies much of the standard statistical methodology. Knowing how to determine whether a sample of measurements is from a normally distributed population is crucial both in the development of statistical theory and in practice. W. Ware and J. Ferron have developed a new test statistic, modeled after the K-squared test…
Descriptors: Monte Carlo Methods, Power (Statistics), Sample Size, Simulation
Brooks, Gordon P.; Barcikowski, Robert S. – 1995
When multiple regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If sample size is inadequate, the model may not predict well in future samples. Unfortunately, there are problems and contradictions among the various sample size methods in regression. For example, how does one reconcile…
Descriptors: Monte Carlo Methods, Power (Statistics), Prediction, Regression (Statistics)
Dickinson, Wendy; Kromrey, Jeffrey D. – 1997
The analysis of interaction effects in multiple regression has received considerable attention in recent years, but problems with the valid identification of moderating variables have been noted by researchers. G. McClelland and C. Judd (1993), in their discussion of the statistical difficulties of detecting interactions and moderating effects,…
Descriptors: Effect Size, Interaction, Monte Carlo Methods, Regression (Statistics)
Barnette, J. Jackson; McLean, James E. – 1997
J. Barnette and J. McLean (1996) proposed a method of controlling Type I error in pairwise multiple comparisons after a significant omnibus F test. This procedure, called Alpha-Max, is based on a sequential cumulative probability accounting procedure in line with Bonferroni inequality. A missing element in the discussion of Alpha-Max was the…
Descriptors: Analysis of Variance, Comparative Analysis, Monte Carlo Methods, Probability
Tanguma, Jesus – 2001
The purpose of this study was to investigate the effects of sample size on the power of five selected fit indices through a Monte Carlo simulation. Two models (a reduced and a complete model) and 6 sample sizes (20, 50, 100, 200, 500, and 1,000) were used to investigate the effect on the power of fit indices as the sample size was varied. The…
Descriptors: Goodness of Fit, Models, Monte Carlo Methods, Power (Statistics)
Barnette, J. Jackson; McLean, James E. – 2000
The probabilities of attaining varying magnitudes of standardized effect sizes by chance and when protected by a 0.05 level statistical test were studied. Monte Carlo procedures were used to generate standardized effect sizes in a one-way analysis of variance situation with 2 through 5, 6, 8, and 10 groups with selected sample sizes from 5 to 500.…
Descriptors: Computer Simulation, Effect Size, Monte Carlo Methods, Probability
Vargha, Andras; Delaney, Harold D. – 2000
In this paper, six statistical tests of stochastic equality are compared with respect to Type I error and power through a Monte Carlo simulation. In the simulation, the skewness and kurtosis levels and the extent of variance heterogeneity of the two parent distributions were varied across a wide range. The sample sizes applied were either small or…
Descriptors: Comparative Analysis, Monte Carlo Methods, Robustness (Statistics), Sample Size
Peer reviewedHarwell, Michael – Journal of Experimental Education, 1997
The meta-analytic method proposed by S. W. Raudenbush (1988) for studying variance heterogeneity was studied. Results of a Monte Carlo study indicate that the Type I error rate of the test is sensitive to even modestly platykurtic score distributions and to the ratio of study sample size to the number of studies. (SLD)
Descriptors: Meta Analysis, Monte Carlo Methods, Research Reports, Sample Size
Peer reviewedMay, Kim; Hittner, James B. – Journal of Experimental Education, 1997
A Monte Carlo evaluation of four test statistics for comparing dependent zero-order correlations was conducted with four sample sizes and three population distributions. Results indicate that choice of optimal test statistic depends on sample size and distribution, and predictor intercorrelation and effect size or magnitude of the…
Descriptors: Correlation, Effect Size, Monte Carlo Methods, Predictor Variables
Peer reviewedCaruso, John C.; Cliff, Norman – Educational and Psychological Measurement, 1997
Several methods of constructing confidence intervals for Spearman's rho (rank correlation coefficient) (C. Spearman, 1904) were tested in a Monte Carlo study using 2,000 samples of 3 different sizes. Results support the continued use of Spearman's rho in behavioral research. (SLD)
Descriptors: Behavioral Science Research, Correlation, Monte Carlo Methods, Power (Statistics)
Peer reviewedThompson, Bruce – Educational and Psychological Measurement, 1990
A Monte Carlo study involving 1,000 random samples from each of 64 different population matrices investigated bias in both canonical correlation and redundancy coefficients. Results indicate that the Wherry correction provides a reasonable solution to this problem and that canonical results are not as biased as has been believed. (TJH)
Descriptors: Error of Measurement, Monte Carlo Methods, Multivariate Analysis, Relationship
Peer reviewedKennedy, Eugene – Applied Psychological Measurement, 1988
A Monte Carlo study was conducted to examine the performance of several strategies for estimating the squared cross-validity coefficient of a sample regression equation in the context of best subset regression. Results concerning sample size effects and the validity of estimates are discussed. (TJH)
Descriptors: Estimation (Mathematics), Monte Carlo Methods, Multiple Regression Analysis, Predictive Validity
Peer reviewedRasmussen, Jeffrey Lee – Applied Psychological Measurement, 1988
The performance was studied of five small-sample statistics--by F. M. Lord, W. Kristof, Q. McNemar, R. A. Forsyth and L. S. Feldt, and J. P. Braden--that test whether two variables measure the same trait except for measurement error. Effects of non-normality were investigated. The McNemar statistic was most powerful. (TJH)
Descriptors: Error of Measurement, Monte Carlo Methods, Psychometrics, Sample Size
Peer reviewedKromrey, Jeffrey D.; Hines, Constance V. – Educational and Psychological Measurement, 1995
The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…
Descriptors: Estimation (Mathematics), Monte Carlo Methods, Regression (Statistics), Sample Size
Peer reviewedMcGraw, Kenneth O.; And Others – Journal of Consulting and Clinical Psychology, 1994
Suggest practical procedure for estimating number of subjects that need to be screened to obtain sample of fixed size that meets multiple correlated criteria. Procedure described is based on fact that least-squares regression provides good quadratic fit for Monte Carlo estimates of multivariate probabilities when they are plotted as function of…
Descriptors: Measurement Techniques, Monte Carlo Methods, Research Methodology, Research Problems


