NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 66 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lingbo Tong; Wen Qu; Zhiyong Zhang – Grantee Submission, 2025
Factor analysis is widely utilized to identify latent factors underlying the observed variables. This paper presents a comprehensive comparative study of two widely used methods for determining the optimal number of factors in factor analysis, the K1 rule, and parallel analysis, along with a more recently developed method, the bass-ackward method.…
Descriptors: Factor Analysis, Monte Carlo Methods, Statistical Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hyunjung Lee; Heining Cham – Educational and Psychological Measurement, 2024
Determining the number of factors in exploratory factor analysis (EFA) is crucial because it affects the rest of the analysis and the conclusions of the study. Researchers have developed various methods for deciding the number of factors to retain in EFA, but this remains one of the most difficult decisions in the EFA. The purpose of this study is…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Goodness of Fit
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fatih Orçan – International Journal of Assessment Tools in Education, 2025
Factor analysis is a statistical method to explore the relationships among observed variables and identify latent structures. It is crucial in scale development and validity analysis. Key factors affecting the accuracy of factor analysis results include the type of data, sample size, and the number of response categories. While some studies…
Descriptors: Factor Analysis, Factor Structure, Item Response Theory, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Fujimoto, Ken A.; Neugebauer, Sabina R. – Educational and Psychological Measurement, 2020
Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are…
Descriptors: Bayesian Statistics, Item Response Theory, Sample Size, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Beauducel, André; Kersting, Martin – Educational and Psychological Measurement, 2020
We investigated by means of a simulation study how well methods for factor rotation can identify a two-facet simple structure. Samples were generated from orthogonal and oblique two-facet population factor models with 4 (2 factors per facet) to 12 factors (6 factors per facet). Samples drawn from orthogonal populations were submitted to factor…
Descriptors: Factor Structure, Factor Analysis, Sample Size, Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kiliç, Abdullah Faruk; Uysal, Ibrahim – Turkish Journal of Education, 2019
In this study, the purpose is to compare factor retention methods under simulation conditions. For this purpose, simulations conditions with a number of factors (1, 2 [simple]), sample sizes (250, 1.000, and 3.000), number of items (20, 30), average factor loading (0.50, 0.70), and correlation matrix (Pearson Product Moment [PPM] and Tetrachoric)…
Descriptors: Simulation, Factor Structure, Sample Size, Test Length
Peer reviewed Peer reviewed
Direct linkDirect link
Zhao, Xin; Coxe, Stefany; Sibley, Margaret H.; Zulauf-McCurdy, Courtney; Pettit, Jeremy W. – Prevention Science, 2023
There has been increasing interest in applying integrative data analysis (IDA) to analyze data across multiple studies to increase sample size and statistical power. Measures of a construct are frequently not consistent across studies. This article provides a tutorial on the complex decisions that occur when conducting harmonization of measures…
Descriptors: Data Analysis, Sample Size, Decision Making, Test Items
Lydia Bradford – ProQuest LLC, 2024
In randomized control trials (RCT), the recent focus has shifted to how an intervention yields positive results on its intended outcome. This aligns with the recent push of implementation science in healthcare (Bauer et al., 2015) but goes beyond this. RCTs have moved to evaluating the theoretical framing of the intervention as well as differing…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Randomized Controlled Trials, Research Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gezer, Melehat – International Journal of Assessment Tools in Education, 2022
This study aimed to scrutinize the scales used in citizenship education in Turkey through thematic content analysis. In the study, all of the scales developed/adapted within the scope of citizenship education without a year limitation were reviewed and 56 scales found in these studies were evaluated. The document analysis was used as the method of…
Descriptors: Foreign Countries, Measures (Individuals), Test Construction, Construct Validity
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cortes, Sylvester T.; Pineda, Hedeliza A.; Geverola, Immar Jun R. – Advanced Education, 2021
The instrument that assesses teachers' competence on AR methodology is limited. Thus, it is one of the issues concerning evaluating the effectiveness of a professional development program on designing AR projects. It is difficult to determine how much and what teachers have learned in a course or training. Thus, this cross-sectional study aimed to…
Descriptors: Factor Analysis, Teacher Competencies, Action Research, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Oscar; MacKinnon, David P. – Educational and Psychological Measurement, 2018
Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…
Descriptors: Statistical Analysis, Monte Carlo Methods, Measurement, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5