Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 6 |
Descriptor
Source
| Educational and Psychological… | 2 |
| Grantee Submission | 1 |
| Journal of Educational and… | 1 |
| Journal of Experimental… | 1 |
| Journal of Intelligence | 1 |
| Large-scale Assessments in… | 1 |
Author
Publication Type
| Journal Articles | 7 |
| Reports - Research | 7 |
Education Level
Audience
Location
| California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
What Works Clearinghouse Rating
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
von Oertzen, Timo; Schmiedek, Florian; Voelkle, Manuel C. – Journal of Intelligence, 2020
Properties of psychological variables at the mean or variance level can differ between persons and within persons across multiple time points. For example, cross-sectional findings between persons of different ages do not necessarily reflect the development of a single person over time. Recently, there has been an increased interest in the…
Descriptors: Cognitive Ability, Individual Differences, Statistical Analysis, Factor Analysis
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Schweig, Jonathan – Journal of Educational and Behavioral Statistics, 2014
Measures of classroom environments have become central to policy efforts that assess school and teacher quality. This has sparked a wide interest in using multilevel factor analysis to test measurement hypotheses about classroom-level variables. One approach partitions the total covariance matrix and tests models separately on the…
Descriptors: Factor Analysis, Robustness (Statistics), Measurement, Classroom Environment
Peer reviewedBroodbooks, Wendy J.; Elmore, Patricia B. – Educational and Psychological Measurement, 1987
The effects of sample size, number of variables, and population value of the congruence coefficient on the sampling distribution of the congruence coefficient were examined. Sample data were generated on the basis of the common factor model, and principal axes factor analyses were performed. (Author/LMO)
Descriptors: Factor Analysis, Mathematical Models, Monte Carlo Methods, Predictor Variables

Direct link
