NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Grade 41
Audience
Laws, Policies, & Programs
No Child Left Behind Act 20011
Assessments and Surveys
Trends in International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2023
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In…
Descriptors: Sample Size, Computation, Meta Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Edelsbrunner, Peter A.; Flaig, Maja; Schneider, Michael – Journal of Research on Educational Effectiveness, 2023
Latent transition analysis is an informative statistical tool for depicting heterogeneity in learning as latent profiles. We present a Monte Carlo simulation study to guide researchers in selecting fit indices for identifying the correct number of profiles. We simulated data representing profiles of learners within a typical pre- post- follow…
Descriptors: Learning Processes, Profiles, Monte Carlo Methods, Bayesian Statistics
Aki Vehtari; Andrew Gelman; Daniel Simpson; Bob Carpenter; Paul-Christian Burkner – Grantee Submission, 2021
Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic [R-hat] of Gelman and Rubin (1992) has serious flaws. Traditional [R-hat] will fail to correctly diagnose convergence failures…
Descriptors: Markov Processes, Monte Carlo Methods, Bayesian Statistics, Efficiency
Peer reviewed Peer reviewed
Direct linkDirect link
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Babcock, Ben; Hodge, Kari J. – Educational and Psychological Measurement, 2020
Equating and scaling in the context of small sample exams, such as credentialing exams for highly specialized professions, has received increased attention in recent research. Investigators have proposed a variety of both classical and Rasch-based approaches to the problem. This study attempts to extend past research by (1) directly comparing…
Descriptors: Item Response Theory, Equated Scores, Scaling, Sample Size
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Yang; Yang, Ji Seung – Journal of Educational and Behavioral Statistics, 2018
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a…
Descriptors: Intervals, Scores, Item Response Theory, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, William Holmes; Hernandez Finch, Maria E. – AERA Online Paper Repository, 2017
High dimensional multivariate data, where the number of variables approaches or exceeds the sample size, is an increasingly common occurrence for social scientists. Several tools exist for dealing with such data in the context of univariate regression, including regularization methods such as Lasso, Elastic net, Ridge Regression, as well as the…
Descriptors: Multivariate Analysis, Regression (Statistics), Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pfaffel, Andreas; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
Approaches to correcting correlation coefficients for range restriction have been developed under the framework of large sample theory. The accuracy of missing data techniques for correcting correlation coefficients for range restriction has thus far only been investigated with relatively large samples. However, researchers and evaluators are…
Descriptors: Correlation, Sample Size, Error of Measurement, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Lamsal, Sunil – ProQuest LLC, 2015
Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…
Descriptors: Item Response Theory, Monte Carlo Methods, Maximum Likelihood Statistics, Markov Processes
Previous Page | Next Page ยป
Pages: 1  |  2