Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
| Accuracy | 1 |
| Causal Models | 1 |
| Computation | 1 |
| Data Analysis | 1 |
| Educational Experiments | 1 |
| Electronic Learning | 1 |
| Research Methodology | 1 |
| Statistical Inference | 1 |
Source
| Grantee Submission | 1 |
Publication Type
| Reports - Research | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation

Peer reviewed
Direct link
