NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gelman, Andrew; Hill, Jennifer; Yajima, Masanao – Journal of Research on Educational Effectiveness, 2012
Applied researchers often find themselves making statistical inferences in settings that would seem to require multiple comparisons adjustments. We challenge the Type I error paradigm that underlies these corrections. Moreover we posit that the problem of multiple comparisons can disappear entirely when viewed from a hierarchical Bayesian…
Descriptors: Intervals, Comparative Analysis, Inferences, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Cicchetti, Domenic V.; Koenig, Kathy; Klin, Ami; Volkmar, Fred R.; Paul, Rhea; Sparrow, Sara – Journal of Autism and Developmental Disorders, 2011
The objectives of this report are: (a) to trace the theoretical roots of the concept clinical significance that derives from Bayesian thinking, Marginal Utility/Diminishing Returns in Economics, and the "just noticeable difference", in Psychophysics. These concepts then translated into: Effect Size (ES), strength of agreement, clinical…
Descriptors: Autism, Intelligence Tests, Statistical Significance, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Maraun, Michael; Gabriel, Stephanie – Psychological Methods, 2010
In his article, "An Alternative to Null-Hypothesis Significance Tests," Killeen (2005) urged the discipline to abandon the practice of "p[subscript obs]"-based null hypothesis testing and to quantify the signal-to-noise characteristics of experimental outcomes with replication probabilities. He described the coefficient that he…
Descriptors: Hypothesis Testing, Statistical Inference, Probability, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Cumming, Geoff – Psychological Methods, 2010
This comment offers three descriptions of "p[subscript rep]" that start with a frequentist account of confidence intervals, draw on R. A. Fisher's fiducial argument, and do not make Bayesian assumptions. Links are described among "p[subscript rep]," "p" values, and the probability a confidence interval will capture…
Descriptors: Replication (Evaluation), Measurement Techniques, Research Methodology, Validity
Peer reviewed Peer reviewed
Schwartz, Steven; Dalgleish, Len – Journal of Research in Personality, 1982
Statistical significance is not a sufficient condition for claiming a hypothesis has been supported. Constructive replications are more important. Statistically significant results may be meaningless while a sequence of nonsignificant results may be quite important. Gives advice on how to overcome some limitations of classifical statistical…
Descriptors: Bayesian Statistics, Data Analysis, Personality Studies, Research Methodology
Peer reviewed Peer reviewed
McClure, John; Suen, Hoi K. – Topics in Early Childhood Special Education, 1994
This article compares three models that have been the foundation for approaches to the analysis of statistical significance in early childhood research--the Fisherian and the Neyman-Pearson models (both considered "classical" approaches), and the Bayesian model. The article concludes that all three models have a place in the analysis of research…
Descriptors: Bayesian Statistics, Early Childhood Education, Educational Research, Hypothesis Testing