Publication Date
In 2025 | 0 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 31 |
Since 2016 (last 10 years) | 76 |
Since 2006 (last 20 years) | 131 |
Descriptor
Bayesian Statistics | 158 |
Regression (Statistics) | 158 |
Models | 46 |
Statistical Analysis | 40 |
Computation | 31 |
Comparative Analysis | 28 |
Correlation | 27 |
Prediction | 20 |
Scores | 20 |
Item Response Theory | 19 |
Simulation | 19 |
More ▼ |
Source
Author
Choi, Kilchan | 4 |
Karabatsos, George | 4 |
Booker, Kevin | 3 |
Chojnacki, Gregory | 3 |
Coen, Thomas | 3 |
Gelman, Andrew | 3 |
Gleason, Philip | 3 |
Goble, Lisbeth | 3 |
Houston, Walter M. | 3 |
Knechtel, Virginia | 3 |
Koedinger, Kenneth R. | 3 |
More ▼ |
Publication Type
Education Level
Higher Education | 21 |
Secondary Education | 16 |
Postsecondary Education | 15 |
Elementary Education | 12 |
High Schools | 9 |
Middle Schools | 8 |
Elementary Secondary Education | 7 |
Grade 5 | 6 |
Grade 6 | 5 |
Intermediate Grades | 5 |
Grade 10 | 4 |
More ▼ |
Audience
Practitioners | 1 |
Researchers | 1 |
Location
Netherlands | 4 |
Florida | 2 |
Germany | 2 |
Illinois | 2 |
Israel | 2 |
Spain | 2 |
Australia | 1 |
Austria | 1 |
Brazil | 1 |
California (Los Angeles) | 1 |
Colombia | 1 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 1 |
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations | 1 |
Christian Röver; David Rindskopf; Tim Friede – Research Synthesis Methods, 2024
The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of [tau], the between-study standard deviation, and the shrunken estimates of the study effects as a…
Descriptors: Graphs, Meta Analysis, Bayesian Statistics, Visualization
Michael Nagel; Lukas Fischer; Tim Pawlowski; Augustin Kelava – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Bayesian estimations of complex regression models with high-dimensional parameter spaces require advanced priors, capable of addressing both sparsity and multicollinearity in the data. The Dirichlet-horseshoe, a new prior distribution that combines and expands on the concepts of the regularized horseshoe and the Dirichlet-Laplace priors, is a…
Descriptors: Bayesian Statistics, Regression (Statistics), Computation, Statistical Distributions
Xia, Xiaona – Interactive Learning Environments, 2023
The research of multi-category learning behaviors is a hot issue in interactive learning environment, and there are many challenges in data statistics and relationship modeling. We select the massive learning behaviors data of multiple periods and courses and study the decision application of regression analysis. First, based on the definition of…
Descriptors: Learning Analytics, Decision Making, Regression (Statistics), Bayesian Statistics
Karyssa A. Courey; Frederick L. Oswald; Steven A. Culpepper – Practical Assessment, Research & Evaluation, 2024
Historically, organizational researchers have fully embraced frequentist statistics and null hypothesis significance testing (NHST). Bayesian statistics is an underused alternative paradigm offering numerous benefits for organizational researchers and practitioners: e.g., accumulating direct evidence for the null hypothesis (vs. 'fail to reject…
Descriptors: Bayesian Statistics, Statistical Distributions, Researchers, Institutional Research
Sperandei, Sandro; Bastos, Leonardo Soares; Ribeiro-Alves, Marcelo; Reis, Arianne; Bastos, Francisco Inácio – International Journal of Social Research Methodology, 2023
The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection…
Descriptors: Regression (Statistics), Recruitment, Sampling, Simulation
Gibson, C. Ben; Sutton, Jeannette; Vos, Sarah K.; Butts, Carter T. – Sociological Methods & Research, 2023
Microblogging sites have become important data sources for studying network dynamics and information transmission. Both areas of study, however, require accurate counts of indegree, or follower counts; unfortunately, collection of complete time series on follower counts can be limited by application programming interface constraints, system…
Descriptors: Social Networks, Network Analysis, Social Media, Mathematics
Denisa Gandara; Hadis Anahideh – Society for Research on Educational Effectiveness, 2024
Background/Context: Predictive analytics has emerged as an indispensable tool in the education sector, offering insights that can improve student outcomes and inform more equitable policies (Friedler et al., 2019; Kleinberg et al., 2018). However, the widespread adoption of predictive models is hindered by several challenges, including the lack of…
Descriptors: Prediction, Learning Analytics, Ethics, Statistical Bias
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Bayesian Logistic Regression: A New Method to Calibrate Pretest Items in Multistage Adaptive Testing
TsungHan Ho – Applied Measurement in Education, 2023
An operational multistage adaptive test (MST) requires the development of a large item bank and the effort to continuously replenish the item bank due to concerns about test security and validity over the long term. New items should be pretested and linked to the item bank before being used operationally. The linking item volume fluctuations in…
Descriptors: Bayesian Statistics, Regression (Statistics), Test Items, Pretesting
Xu, Jun; Bauldry, Shawn G.; Fullerton, Andrew S. – Sociological Methods & Research, 2022
We first review existing literature on cumulative logit models along with various ways to test the parallel lines assumption. Building on the traditional frequentist framework, we introduce a method of Bayesian assessment of null values to provide an alternative way to examine the parallel lines assumption using highest density intervals and…
Descriptors: Bayesian Statistics, Evaluation Methods, Models, Intervals
Erin W. Post – ProQuest LLC, 2024
Multivariate count data is ubiquitous in many areas of research including the physical, biological, and social sciences. These data are traditionally modeled with the Dirichlet Multinomial distribution (DM). A new, more flexible Dirichlet-Tree Multinomial (DTM) model is gaining in popularity. Here, we consider Bayesian DTM regression models. Our…
Descriptors: Regression (Statistics), Multivariate Analysis, Statistical Distributions, Bayesian Statistics
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis