Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Randomized Controlled Trials | 9 |
Regression (Statistics) | 9 |
Statistical Inference | 9 |
Causal Models | 5 |
Educational Research | 3 |
Probability | 3 |
Quasiexperimental Design | 3 |
Research Design | 3 |
Intervention | 2 |
Research Methodology | 2 |
Research Problems | 2 |
More ▼ |
Source
Author
Kim, Yongnam | 2 |
A. Krishnamachari | 1 |
Alex Goodman | 1 |
Andrew Jaciw | 1 |
Beth Chance | 1 |
Deke, John | 1 |
Hall, Courtney E. | 1 |
Hansen, Ben B. | 1 |
Hitchcock, John H. | 1 |
Johnson, R. Burke | 1 |
K. L. Anglin | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 5 |
Reports - Descriptive | 2 |
Numerical/Quantitative Data | 1 |
Reference Materials -… | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Canada | 1 |
Puerto Rico | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Andrew Jaciw – Society for Research on Educational Effectiveness, 2024
Background: Rooted in problems of social justice, intersectionality addresses intragroup differences in impacts and outcomes and the compound discrimination at specific intersections of classification (Crenshaw,1991). It stresses that deficits/debts in outcomes often occur non-additively; for example, discriminatory hiring practices can be…
Descriptors: Intersectionality, Classification, Randomized Controlled Trials, Factor Analysis

Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis – Grantee Submission, 2024
In the complex world of educational policy, causal inferences will be debated. As we review non-experimental designs in educational policy, we focus on how to clarify and focus the terms of debate. We begin by presenting the potential outcomes/counterfactual framework and then describe approximations to the counterfactual generated from the…
Descriptors: Causal Models, Statistical Inference, Observation, Educational Policy
K. L. Anglin; A. Krishnamachari; V. Wong – Grantee Submission, 2020
This article reviews important statistical methods for estimating the impact of interventions on outcomes in education settings, particularly programs that are implemented in field, rather than laboratory, settings. We begin by describing the causal inference challenge for evaluating program effects. Then four research designs are discussed that…
Descriptors: Causal Models, Statistical Inference, Intervention, Program Evaluation
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Steiner, Peter M.; Kim, Yongnam; Hall, Courtney E.; Su, Dan – Sociological Methods & Research, 2017
Randomized controlled trials (RCTs) and quasi-experimental designs like regression discontinuity (RD) designs, instrumental variable (IV) designs, and matching and propensity score (PS) designs are frequently used for inferring causal effects. It is well known that the features of these designs facilitate the identification of a causal estimand…
Descriptors: Graphs, Causal Models, Quasiexperimental Design, Randomized Controlled Trials
Hitchcock, John H.; Johnson, R. Burke; Schoonenboom, Judith – Research in the Schools, 2018
The central purpose of this article is to provide an overview of the many ways in which special educators can generate and think about causal inference to inform policy and practice. Consideration of causality across different lenses can be carried out by engaging in multiple method and mixed methods ways of thinking about inference. This article…
Descriptors: Causal Models, Statistical Inference, Special Education, Educational Research
Kim, Yongnam; Steiner, Peter – Educational Psychologist, 2016
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Descriptors: Quasiexperimental Design, Causal Models, Statistical Inference, Randomized Controlled Trials
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias